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I. INTRODUCTION

Plasma physics simulation are integral tools used from
astrophysics, fusion energy research to weather prediction. The
Particle-in-Cell method is a widely used simulation technique.
It mainly consists of a three step computational loop.

1) Particle Mover (e.g. fluid particles): Movement of

individual particles is integrated in continuous space.

2) Interpolate P2G: Respective particle charges are inter-

polated onto a grid mesh

3) Field solver: solve Maxwell’s equations on the mesh to

update the electromagnetic field.

The goal of this project was to accelerate a simplified Particle-
in-Cell simulation [1f], [2] through the use of GPUs. The PIC
method is highly suited for GPU optimisation: it is highly
parallel and is numerically intensive. Computing the values
of particles and density information has a high arithmetic
intensity - e.g. simulating a grid of 256 x 128 for 100 cycles
took almost 5 minutes on our test system. A particle simulation
tracks typically millions of particles, computing a trajectory
for all of them independently. The embarrassingly parallel
nature of the problem structure makes this a prime target for
GPU optimisation. As all particle data is stored in continuous
arrays, throughput can additionally benefit from coalesced
memory access. We can thus demonstrate large performance
improvements for the simulation in our test environment.

Crucially, the problem scope has been reduced for our case:
we skip solving for the electromagnetic field (the third step of
the computational loop) as specied by the project assignnment.
We only focus on integrating the particles in space and inter-
polating the charges onto the grid points. This simplification
not only reduces the overall code complexity of the simulation,
but also allows for some aggressive optimisation. For example,
we will exploit the fact that the field information doesn’t
change and therefore can remain in GPU memory for the
whole simulation.

II. METHODOLOGY

We focused on 2 functions defined in the src/Par-
ticles.cu file: move_PC and interpP2G, where the
former is responsible for the movement of the particles and
the latter interpolates densities based on the new positions of
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Fig. 1: Structure of Simplified PIC-Solver, [3]

the particles for each species. In the starter code, both these
implementations used the CPU. Thus, our project consisted of
the following:

1) GPU Port: We first ported both of these functions to
work on the GPU using CUDA programming (Topic 1
from Group A).

2) Profiling then Optimizing: After the initial, naive port
was completed on the GPU, we profiled the GPU version
and developed several optimizations, with each change
building on top of the other. (Topic 2 from Group A).

In this section, we first give an overview of our approach
for the GPU port, and then outline successive optimisation
steps yielding several different code versions. A comparison
between the successively optimised versions is presented in
Section

A. Naive GPU Port

The main challenge in porting the existing code to run
on the GPU is to allocate and copy all structs correctly.
Because the data is stored in arrays within said structs,
if simply copied to the GPU using cudaMemcpy, the copied
struct would contain invalid pointers (pointing to CPU
memory). This is solved by a two stage process. We first
allocate the array on the GPU, and then allocate the struct
by replacing the CPU pointers with the GPU pointers. List-
ing [I| demonstrates this for the particle data. This allows
us to split up the mover_PC and interpP2G functions
into two functions: mover_PC_gpu and interpP2G_gpu.
The mover_PC function becomes mover_PC_gpu, which
specifies the kernel information (Threads Per Block (TPB),
Number of Blocks (NBlocks)), calls the GPU kernel and does
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CUDA error handling. For TPB we chose 1024 and thus
NBlocks is [%]. In the sequential version of the code,
the computation is written as two nested for loops where the
outer loop specifies subcycling and the inner loop iterates over
each particle. The ordering of these loops are independent and
each particle can be computed independently, so we can write
the kernel by reordering the loops and replace the particle
index with block and thread id.

We used a similar approach for the interpP2G method,
where the interpP2G_gpu function sets up the kernel calls
and the interp_particle_gpu kernel contains the com-
putations. The CPU interpolation looped over all the particles,
where each of the 10 density quantities were interpolated
based on particle positions. The interp_particle_gpu
kernel removes the outer loop over the particles, meaning that
one GPU thread is responsible for interpolating the densities
from one particle. Because of this parallelism, multiple threads
might modify the same density quantity at once. Thus, an
atomicAdd is used to ensure integrity of the computation
while updating each density quantity. Finally, we also observed
that in the CPU version there is each density quantity is
interpolated using its own nested loops. Instead our kernel
uses one nested loop and interpolates all density quantities
at once, resulting in more readable code and a less complex
kernel.

This implementation structure for mover_PC_gpu and
interpP2G_gpu resulted in a structure depicted in fig-
ure @ We allocated memory, moved data to the GPU, and
called the kernel, which was after computation was followed
by moving the data back and deallocating memory.

B. Consolidation

The naive implementation had the obvious problem of
allocating and deallocating memory structures as well as
copying data (like the grid) that is needed for both kernels
(see Figure [2a) This is inefficient compared to first allo-
cating memory on the device before the simulation cycles,
copying the required data over to the GPU once, and then
deallocating once the simulation is complete. Profiling our
first implementation reveals that we spend up to 75% of

our time allocating and moving data. Figure [3] clearly shows
that this is the main bottleneck of the computation for the
mover kernel and is a non-trivial factor in the runtime for the
interpolation. To “consolidate” these memory structures into
permanent memory, we identified data that is used by both
kernels and which does not change during the duration of the
simulation. This is the case for the grid, parameters, and field
data, which we allocate and copy once and then leave in the
GPU memory for the whole computation. The life-cycle for
these objects now looks like as depicted in figure 2b] We term
this step consolidation.

Performing more runtime tests revealed that the perfor-
mance gains from this step were negligible: particle informa-
tion was the largest contribution to memory transfer overhead.
To further reduce memory overhead, we overlap the memory
movement with the actual computation by introducing streams.

C. Streaming

To address the main bottleneck we switched our attention
to optimising the transfer of information which is updated
during simulation: particles (struct particles) and in-
terpolated densities (interpDensSpecies).

We used streams to address the bottleneck of memory
transfer time for these entities. Our hope was to exploit
CUDA streams to mask GPU-CPU latency with the overlap
of communication and computation. With this, computation
on mutually independent parts of the problem can occur
asynchronously, meaning that not all of the data needs to be
on the GPU before the computation can begin, and not all
of the computation needs to have been completed before the
computation which has completed can be transferred back to
the CPU.

In addition to using streams, we also noticed that before the
computation cycle, the interpolated densities for each of the
species is set to 0. In this optimization, we also exploited this
fact, using cudaMemset instead of cudaMemcpy (async
versions of memset where appropriate) to initialize the in-
terpolated densities on the GPU. We also realized that while
copying the interpolated densities and particles back and forth
during the simulation, we would only need to malloc and
free the GPU memory responsible for holding this informa-
tion once, which would save us minor runtime that is spent on
malloc and free calls in the kernel setup functions for each
of these kernels. Finally, we realized that we did not need to
copy entire structures (such as struct particles) to the
GPU, since we were already copying the contained data (such
as part—->x) that we were going to use. This allowed us to
remove additional cudaMemcpy call, further simplifying our
kernel setup at the expense of adding more arguments to the
kernel, which seemed like a fair trade-off.

When it comes to splitting a problem into independent
chunks for streaming, there were 2 natural approaches: split
based on species or based on particles. For both these stream-
ing approaches, we used 4 CUDA streams.

1) Species Streaming: In the original CPU version, most
computation is performed species by species. It thus felt
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natural to allocate each species to a stream. For each species in
a simulation cycle, the movement of particles and interpolation
of densities is then performed independently. This particle
movement for each species can be given to one stream,
allowing for data-movement and computation of new particle
positions for one species to occur simultaneously with another
species. The same occurs for the interpolation of densities.
This idea is presented in pseudocode form in Listing [2] in the
Appendix.

An additional thing to take care of when using streams is the
utilization of Pinned Memory for data that will be transferred
to and from the GPU asynchronously. The mover_PC step
needs to asynchronously transfer the particles to and from
the GPU, and the interpP2G step needs to perform this
asynchronous transfer for particles and interpolated densities.
To this end, we use cudaHostAlloc and cudaFreeHost
to manage the lifecycles of the data involved in the asyn-
chronous transfers. An example of this for particle arrays (such
as part->x) can be seen in Listing [3] in the Appendix.

One possible downside of this species-wise streaming ap-
proach could be uneven load distribution across streams if one
species is fairly large or involves more complex computation
than the others. This led us to also explore a more judicious
streaming approach, that of particles.

2) Farticle Streaming: Instead here we break the particle
arrays (such as part->x or part->u) for each species into
smaller segments. This is done for each species in each call
to the moverPC or the interpP2G steps in all cycles.

The movement of particles (the mover_PC_gpu call) for
a given species is now broken down in to smaller chunks and
performed asynchronously with the associated data-movement
(both HtoD and DtoH), before this same step is repeated
for the next species. The interpolation of densities (the
interpP2G_gpu call) overlaps HtoD movement of particle
information with the computation of the interpolated densities,
but the initialization of the densities on the GPU and the DtoH

transfer of the computed densities happens synchronously.

The reason for the synchronous movement of density related
information for the interpolation kernel in this approach is the
logic of the kernel. We parallelize both kernels by assigning
one GPU thread to perform computation for one particle. The
kernel access 8 cells for each density array, meaning that
the access to elements of the density arrays from different
segments, if they were streamed as well, could lead to incorrect
answers or program crashes. Thus, the overlap of the HtoD
transfer of the particle arrays and the kernel computation
is sandwiched by the synchronous initialization and DtoH
transfer of the density arrays.

When it came to dividing the particles array into different
number of segments which could be worked on in parallel,
we chose 32 segments. Thus, a maximum of [w
elements of particle arrays are transferred and computed on the
GPU be each stream at a time, with the possibility of the last
segment having fewer elements if the number of particles isn’t
perfectly divisible by 32. The kernel launch configurations
also differ slightly for compared to the previous iterations.
We still have 1024 threads per block, but now each kernel call
handles around [W} elements, so this value is used to
compute the number of blocks for each segment. This size of
32 for segments was chosen for the lowest observed runtime as
compared to larger segment sizes. Pseudocode illustrating the
particle streaming approach with async transfers and kernel
calls can be seen in Listings E| (for particle mover) and |§| (for
density interpolation).

3) Verifying Communication-Computation Overlap: To ver-
ify that both versions of streaming execute with multiple
streams and have overlaps in communication and computation,
we utilized NVIDIA Nsight Systems [4]. Figure [T1] shows
the overlaps for the Species Streaming, and Figure [T2] shows
the overlaps for the Particle Streaming. Note that for the
former, there is an HtoD and DtoH overlap for both kernels,
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Fig. 4: Overlap for Fused Kernel with Particle Streaming

in addition to a memset overlap because of the use of
cudaMemsetAsync for initializing the densities. However,
for the latter, there is no DtoH overlap for the interpolation ker-
nel (and neither for the memset) as that is done synchronously
— as discussed earlier.

D. Kernel Fusion

The final optimization we worked on built on top of
streaming and took the idea of parallel compute one step
further. In both the streaming approaches mentioned earlier,
we first compute the new locations of the particles for all
species through moverPC_gpu, and only after that do we
compute the interpolated densities from these movements
through interpP2G_gpu. However, for a given particle of
a given species, the movement and interpolation of densities
from said movement is independent of the movement and
interpolation of any other particle, regardless of species. Thus,
both the movement and the interpolation steps for a given
particle can happen at the same time as the movement and the
interpolation steps of any other particle.

We exploited this observation by fusing the move_par-
ticle_gpu and the interp_particle_gpu kernels in
to one big kernel: the move_particle_and_interp_-
dens_gpu kernel. Now, instead of 2 separate loops for
movement and then for interpolation for each species, the main
simulation loop consists of just one for-loop which calls the
launcher of this kernel for all species. The function responsible
for setting up and launching this kernel: mover_and_-
interp_gpu inthe src/Particles. cu file, handles the
initialization and transfer of data on the GPU before launching
the fused kernel. This kernel then does all the steps performed
by the original mover kernel, followed by the steps done by
the original interpolation kernel for each particle.

This fused kernel builds on top of the Particle Streaming
approach from Section [[I-C2} Thus, the particle array is
divided in to smaller segments and is copied asynchronously
over to the GPU. After the computation, the new locations of
the particles are copied back to the CPU asynchronously. The
interpolated densities are initialized on the GPU and copied
over to the CPU using synchronous versions of cudaMemset
and cudaMemcpy respectively, for reasons discussed in Sec-
tion The overlap between the HtoD transfer of particles,
the execution of the joint kernel, and the DtoH transfer of
particles can be seen in Figure [

The main benefit of fusion is to reduce the overhead of
launching 2 separate kernels which perform computations in
succession (as seen in Figure [T}

E. Correctness Verification

To verify that the optimised versions are “reasonably”
correct we compare the outputs of the optimised versions
with that of the original CPU simulation. This was done
through the ‘check.py* script present in the root directory of
the project folder(s). To run the script one needs to provide
the data folder paths which contain the . vtk files generated
by a reference implementation and the implementation to be
checked. To be precise: we compared rho net, rhoe and rhoi.
We simulated the CPU and GPU version for 100 iterations.
For every point within the mesh, we checked that the absolute
difference between CPU and GPU version is smaller than
le — 4. This test was passed by all implementations presented
in this report. An example of the test ran for the fused kernel
implementation from section [[I-D] is shown in Figure [T3]

F. Runtime Measurements

To measure the runtime of various implementations, we
executed the simulation on various grid sizes, ranging from
64 x 32 up to 1024 x 512. Per grid cell we used 125 particles
per species. Each simulation was run for 10 cycles using 4
species and no sub-cycling. We ran all simulation 5 times and
provide the mean runtime.

For all implementations except for the Fused Kernel, we
tracked the total runtime, and the runtime of the mover call
and the interpolation call separately. The total runtime here
includes work done on the CPU even for the GPU implemen-
tation, since we only focused on porting the interpolation and
the mover step on the GPU The total runtime is presented to
show an impact of how the speedup would feel in an actual
simulation scenario, and the individual mover and interpolation
provide for a more localized evaluation.

For the Fused Kernel, since both these calls are now
replaced by a single call, we track a combined runtime of the
mover and interpolation step instead of separate runtimes. This
runtime is also tracked for other GPU implementations to get
a better reflection of GPU performance. This is differentiated
from the runtime of the entire simulation, which we refer to
as the fotal runtime.

For investigating our utilization of streams, we use nsys. We
use nsys profile followed by the invocation of the binary
for the simulator to generate an * .nsys-rep file, which we
then open using NVIDIA Nsight Systems to investigate.

III. EXPERIMENTAL SETUP

All runtime tests were performed on the EECS school
cluster. This provides access to a MIG partition of a H100
GPU, where the partition is one eigth of the overall device.



TABLE I: Speedup vs CPU (baseline) - Mover and Interpolation Combined

Grid Size Naive GPU  Consolidation GPU  Particle Streams GPU  Species Streams GPU  Fused Kernel GPU
64x32 2.55% 4.48x 7.45% 8.83x 6.89%
128 x64 5.18x 6.89%x 12.28x 12.99x 12.74x
256128 8.02x 8.91x 15.39x 16.24x 17.39x
512x256 9.10% 10.55% 20.62x 20.75x 24.42x
1024 x512 11.00x 10.75x% 21.50x 21.88x 24.55x%

H100 GPUs have 144 SMs with 80GB of VRAM. The
partition then provides 16 SMs with 10GB of RAM.

IV. RESULTS

We first present a summary of our findings, after which
we will explore the individual implementations in their own
sections. The benchmarking reveals a big overall speedup
for all GPU implementations. As the overall best perform-
ing implementation, the fused kernel achieved up to 10.40x
speedup compared to our CPU baseline implementation at the
largest grid size (1024 x 512) for the total simulation runtime.
Compared to just the runtime of the mover and interpolation
step, the fused kernel achieved a 24.55x speedup compared
the CPU for the largest grid size. The biggest performance im-
provements were found in the moverPC method. Due to its em-
barrassingly parallel structure it achieves over 100x speedup
(see table [V) for the streamed GPU versions compared to the
CPU version for that part of the simulation specifically. In
comparison, the interpolation part “only” performed up to 10x
better (table [VI). This phenomenon is also seen in the GPU
optimizations compared to the Naive GPU implementation,
where mover speedups seem to be larger than the interpolation
speedups. We believe that this is largely due to the use of
atomic operations, which are needed to handle race conditions.
This becomes a bottleneck, especially for smaller grids with
many particles. In addition, Figure [3| also suggests that the
moverPC_gpu is memory bound (HtoD copies) while the
interpP2G_gpu seems kernel bound. The optimizations to
the naive GPU implementation were not aimed at addressing
the logic of the kernels, and thus it is likely that despite the
better memory transfer because of the optimizations, the kernel
logic of the interpolation function (or the interpolation section
of the code for the fused kernel) dominates runtime.

We also want to emphasize that we only run the simulation
for 10 cycles (due to feasibility reasons). This means that the
initialization contributes to a large part to the total runtimes,
which explains the modest speedups factors compared to the
particle mover speedups.

With regards to the performance of the GPU optimizations
compared to the Naive GPU implementation, we observe
that the streamed-particles, streamed-species, and the fused
kernel versions provide noticeable speedup, offering up to
1.95x, 1.99x, and 2.23x quicker runtimes for the mover +
interpolation step for the largest grid size. While giving
some speedups for smaller grid sizes, the consolidated GPU
optimization seems to not offer much advantage, being very
similar in performance to the naive version for the largest grid
size.

Now, we will first focus on the Naive GPU implementation,
comparing its runtime to the base CPU version. Afterwards,
we focus on the 4 optimizations to the Naive GPU imple-
mentation (consolidation, streams with particles, streams with
species, and fused kernel) and compare their performance to
it.

A. Analyzing Scaling Behaviour

We can clearly a big difference in how well the GPU
outperforms the CPU with regards to the problem size. This
is visible in Figure [5] where we see considerable speedup in
even the Naive GPU version compared to the CPU version
for all grid sizes for both the functions, and thus the total
runtime. This is to be expected, due to the fact that larger
problems better amortize GPU overhead costs. Specifically
for the moverPC kernel, we can see that the speedup itself
is around 8x more for the biggest grid size (1024 x 512)
compared to the smallest one (64 x 32) for the Naive GPU
implementation.

B. Consolidation

Moving memory life-cycle handling and copying outside the
simulation loop for the Grid, Field, and Parameters provides
marginal improvement compared to the Naive GPU implemen-
tation for smaller grids, as can be seen in Figure [§]

For larger grid sizes, the speed-up is negligible (around 0.98
for the largest grid). This indicates that any speed-up gained by
removing the transfer of grid, field, and parameters from the
simulation loop was nullified by the growth in the number of
particles with an increase in grid size. In this implementation,
there is still synchronous HtoD transfer of particles occurring
in each simulation loop in each call to either kernels (in
addition to the HtoD movement of interpolated densities for
the interpolation kernel). For smaller grid sizes, the number of
particles being transferred might have been small enough to
be marginally comparable to the grid, field, and parameters.

However, for larger grid sizes, the growth in the number of
particles likely keeps the HtoD transfer times as high as those
seen in Figure 3]

C. Streaming

Both streaming approaches, particle-wise and species-wise,
provide significant speedups of of 1.95 and 1.99x (respec-
tively) for the largest grid size over the naive GPU version
for the combined runtimes of the mover and interpolation
steps. Species-wise streaming slightly outperforms particle-
wise streaming, but even then both version seem to perform
very similarly, as can be seen by their proximity to each
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comes to our input files. As mentioned in Section [[I-F each
species has 125 particles per grid cell, meaning there are the D. Kernel Fusion

same number of particles for all species. Thus each stream has
an even load distribution, which might contribute to slightly
better use of GPU resources compared to the Particle-wise
streaming. To test this, we experimented with an input file in
which one species had 131Mil particles, while the other 3 had
4Mil. We ran this experiment 5 times and recorded the mover
and interpolation step runtimes for Particle-streaming and
Species-streaming. The results of this can be seen in Figure
6 Here, we see that Particle-wise streaming outperforms
species-wise streaming, potentially because species-streaming
loses the well-balanced advantage here. But in either case,
both these optimized streaming versions easily outperform the
naive GPU version. This is attributed to the fact that memory
transfers (Host-to-Device (HtoD) and Device-to-Host (DtoH))

can be seen in Figure [I0}
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V. CONCLUSION

consume a significant portion of the runtime. By overlapping
computation with memory transfers, as shown in Figures [I1]
and [T2] we successfully decrease the runtime.

Fusing the mover and interpolation kernels into a single
kernel launch while doing particle-wise streaming provided
the biggest speedup for the combined mover and interpolation
step over the naive GPU version, ranging from 2.23x - 2.70x
for the grid sizes considered. A visual representation of this

This shows that performing both the mover and interpolation
step for all particles at once in parallel, instead of performing
the mover step and then performing the interpolation step was
advantageous. In addition to this, the elimination of redundant
CUDA overhead of launching more kernels than required was
also reduced, which likely played a small role in reducing the

Figure[7] pits the Fused Kernel against all GPU implementa-
tions, where for the largest grid sizes it comes out as the victor.
For smaller grid sizes, it is slower than the simple Streaming
implementations — likely because of a slightly greater overhead
of launching a complex kernel. However, this complexity starts
paying dividends for larger grid sizes.

One drawback of this approach is that it increases the
complexity of the kernel and could lead to code that is less
readable. This can be circumvented by using __ device_

Our GPU acceleration of the simplified iPIC3D simulation
achieves significant performance gains through systematic
optimizations. A massive computational improvement was
achieved in going from the CPU implementation to a naive
Interpolation GPU implementation by exploiting the embarrassingly parallel
structure of the particle mover and density interpolation. Then,
eliminating the memory management and movement overhead
of constant entities from each simulation loop provided a
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slight performance boost for smaller grid sizes through con-
solidation. However, this performance benefit was quick to
fade as the grid sizes increased, likely to the explosion in
the number of particles which were still being transferred
back and forth every simulation This paved the way for us
to explore overlapping transfers with computation through
streaming, where species-wise streaming and particle-wise
streaming were investigated. Both particle-wise and species-
wise streaming performed comparably well Finally, fusion of
the mover and interpolation step (on top of particle-streaming)
provided the best runtimes out of all of our implementations.

The interpolation kernel did not optimize as well likely
due to atomic operations which are necessary due to the fact
that particles contribute to overlapping grid cells. A secondary
reason could be the fact that the optimizations were not aimed
at addressing or altering the logic of the kernels too much, and
since the interpolation seems to be kernel bound according
to Figure [3] any potential improvements because of better
memory management were dwarfed by the kernel runtime. Nu-
merical differences between CPU and GPU implementations
(within 10~* tolerance) arise from different floating-point
ordering and potential fused multiply-add (FMA) operations
on the GPU. We verified this using a comparison script to
catch bugs during development.

In conclusion, we achieved a speedup of 24.55x on the
biggest input with the fused kernel approach over the CPU ver-
sion for the combined mover and interpolation steps through
systematic GPU optimization. This approach also achieved a
speedup of 2.23x with the biggest input compared to the naive
GPU implementation from which we started. The combination
of memory consolidation, CUDA streams for overlapping
transfers with computation, and kernel fusion provides a solid
foundation for further optimization of more complete PIC
simulations.

A. Limitations

Our simulation does not divide the particle computation in
batches. This means that during computation, all particles for
a given species are on the GPU simultaneously. This limits the

maximum size of grid we can simulate: once the number of
particles in the grid exceeds the maximum allocated memory
on the GPU, we cannot proceed with computation.

This implementation doesn’t involve the field solver. With-
out the field solver, there is no need to transfer density
information back and forth. We simply set the densities to zero
at the start of each cycle rather than transferring the previous
cycles particle and density information (as this would require
the field solver step). This is a specious optimization: for
realistic simulations this would not be possible as the reeval-
vated density information would be essential for simulation
accuracy.

B. Future Work

Adding batching of particle computation would allow us to
bypass the upper limit on grid size imposed by the available
GPU memory. This would involve batching the particle in-
formation in the intialization, transfer to the GPU in chunks,
and only performing the kernel computation on the individual
batches. Additionally, we would also like to explore the impact
of fused kernel with the species-wise streaming approach.
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jovyan@jupyter-rishiv:~/DD2360-GPU/project/iPIC3D-mini$ python3 check.py data data_cpu le-4
[0K] rhoe_60.vtk: max difference 5.000e—07
[0K] rhoe_40.vtk: max difference 2.000e-07
[0K] rhoe_80.vtk: max difference 1.100e-06
[0K] rho_net_50.vtk: max difference 2.820e-07
[0K] rhoi_100.vtk: max difference 1.000e-07
[0K] rhoe_50.vtk: max difference 3.000e-07
[0K] rho_net_70.vtk: max difference 1.100e-06
[0K] rhoi_20.vtk: max difference 1.000e-07
[0K] rhoi_90.vtk: max difference 1.000e-07
[0K] rho_net_60.vtk: max difference 5.400e-07
[0K] rhoe_100.vtk: max difference 1.600e-06
[0K] rho_net_90.vtk: max difference 1.120e-06
[0K] rhoe_30.vtk: max difference 1.000e-07
[0K] rho_net_80.vtk: max difference 1.120e-06
[0K] rhoe_90.vtk: max difference 1.100e-06
[0K] rhoe_10.vtk: max difference 1.000e-07
[0K] rhoi_70.vtk: max difference 1.000e-07
[0K] rhoi_30.vtk: max difference 1.000e-07
[OK] rho_net_20.vtk: max difference 1.000e-07
[0K] rho_net_100.vtk: max difference 1.540e-06
[0K] rhoi_40.vtk: max difference 1.000e-07
[0K] rhoe_20.vtk: max difference 1.000e-07
[0K] rhoi_50.vtk: max difference 1.000e-07
[OK] rho_net_40.vtk: max difference 1.700e-07
[0K] rhoe_70.vtk: max difference 1.000e-06
[0K] rhoi_10.vtk: max difference 1.000e-07
[0K] rho_net_10.vtk: max difference 7.000e-08
[OK] rhoi_80.vtk: max difference 1.000e—-07
[0K] rhoi_60.vtk: max difference 1.000e-07
[0K] rho_net_30.vtk: max difference 1.100e-07

All chegkedrfiles are witb}94?0}§rance:

Fig. 13: Output Verification with Tolerance le — 4



B. Tables

TABLE II: Total Runtime (s) - Mean across 5 runs

Grid Size CPU

Naive GPU  Consolidation GPU  Particle Streams GPU  Species Streams GPU

Fused Kernel GPU

64x32 1.614
128 x 64 6.689
256128 29.187
512x256 125.105
1024x512  539.600

0.701 0.701 0.611 0.588
1.680 1.636 1.253 1.203
5.308 5.272 3.976 3.808
20.691 19.149 13.707 13.862
76.954 78.711 54.732 54.856

0.554

1.204

3.781
12.771
51.893

TABLE III: Speedup vs CPU (baseline) - Total Runtime

Grid Size Naive

GPU  Consolidation GPU  Particle Streams GPU  Species Streams GPU  Fused Kernel GPU

64x32 2.30% 2.30% 2.64% 2.75%
128 x 64 3.98x 4.09x 5.34x 5.56%
256128 5.50% 5.54 % 7.34% 7.66 %
512x256 6.05 % 6.53 % 9.13x 9.02%
1024 x512 7.01x 6.86 % 9.86x 9.84 x

2.91x
5.56x
7.72%
9.80x
10.40x

TABLE IV: Speedup vs main (naive GPU) - Mover and Interpolation Combined

Grid Size

Consolidation GPU  Particle Streams GPU  Species Streams GPU  Fused Kernel GPU

64x32
128x 64
256128
512x256
1024 x512

1.76 x 2.92x 3.46x 2.70x
1.33x 2.37%x 2.51% 2.46x
1.11x 1.92x 2.03x 2.17x
1.16x 2.27x 2.28x 2.68x
0.98 x 1.95x% 1.99x 2.23x

TABLE V: Speedup vs CPU (baseline) - Mover Time / Cycle

Grid Size Naive GPU  Consolidation GPU  Particle Streams GPU  Species Streams GPU

64x32
128 %64
256x128
512x256
1024 %51

2.48% 6.55x% 10.44 x 13.54%
6.70% 12.99x 30.95x 35.28%
13.32x 18.62x 58.12x 67.21x
14.64 x 19.90x 81.69x 91.07x
2 19.07x 18.80% 101.04x 106.45x

TABLE VI: Speedup vs CPU (baseline) - Interpolation Time / Cycle

Grid Size Naive GPU  Consolidation GPU  Particle Streams GPU  Species Streams GPU

64x32

128 %64
256x128
512x256

2.72% 2.70% 4.66x 5.11x
3.63x 3.66 % 5.76 x 5.94 %
4.77% 4.71x 6.81x 7.06 %
5.77x% 6.14 x 9.62x 9.52%

1024 x512 6.76 X 6.57 % 9.91x 10.04 x




C. Code Listings

Listing 1: GPU Memory Allocation
struct particles xd_part = nullptr;
struct particles 1_part = =part;

FPpart =d_part_x = nullptr;

FPpart =d_part_y = nullptr;
FPpart =d_part_z = nullptr;
FPpart =d_part_u = nullptr;
FPpart =d_part_v = nullptr;
FPpart =d_part_w = nullptr;

cudaMalloc(&d_part_x , size_part);
cudaMalloc(&d_part_y , size_part);
cudaMalloc(&d_part_z , size_part);
cudaMalloc(&d_part_u, size_part);
cudaMalloc(&d_part_v, size_part);
cudaMalloc(&d_part_w , size_part);

cudaMemcpy (d_part_x , part—->x, size_part, cudaMemcpyHostToDevice);
cudaMemcpy (d_part_y , part—>y, size_part, cudaMemcpyHostToDevice);
cudaMemcpy(d_part_z , part—>z, size_part, cudaMemcpyHostToDevice);
cudaMemcpy (d_part_u, part—>u, size_part, cudaMemcpyHostToDevice);
cudaMemcpy (d_part_v , part—>v, size_part, cudaMemcpyHostToDevice);
cudaMemcpy (d_part_w, part->w, size_part, cudaMemcpyHostToDevice);

cudaMalloc(&d_part, sizeof (struct particles));

cudaMemcpy (d_part , &l_part, sizeof(struct particles), cudaMemcpyHostToDevice);

Listing 2: Simulation Loop Pseudocode for Species Streaming

(..)
for (int i = 0; i < NUM_CUDA_STREAMS; i++) {
cudaStreamCreate(&streams|[i]);

}
(.0
while (performing cycles) {
for (int is = 0; is < species; is++) {
int stream_id = get_stream_for_species(is);
mover_PC_gpu (..., streams|[stream_id]);
}

synchronize ();

for (int is = 0; is < species; is++) {

int stream_id = get_stream_for_species(is);
interpP2G_gpu (..., streams|[stream_id]);
}
synchronise ();
}
(...)
}

Listing 3: Particle Array Alloc and Free in Pinned Memory

void particle_allocate (...) {

..
cudaHostAlloc ((void =) &(part—>x), npmax % sizeof (FPpart), cudaHostAllocDefault);
..

}

void particle_deallocate (...) {

..)

cudFreeHost(part—>x);

(..)

}



Listing 4: Particle Stream Kernel Setup and Launch for Mover

for (i = 0; i < numSegments; i++) {

int streamId = i \% num_streams
int segmentStart = ...;
(..
asyncCopy(&d_part—>x[segmentStart], &h_part—>x[segmentStart], ..., HtoD, stream|[streamld]);
(..)
TPB = 1024; NBlocks = (elementsInSegment + TPB — 1) / TPB;
mover_kernel <<<NBlocks, TPB, 0, stream|[streamlId]>>>(&d_part—>x[segmentStart], ...);
..
asyncCopy(&h_part—>x[segmentStart], &d_part—>x[segmentStart], ..., DtoH, stream|[streamld]);
}
synchronize ();
(..)

Listing 5: Particle Stream Kernel Setup and Launch for Interpolation

// Synchronous memset
cudaMemset(d—>rhon_flat, 0, ...);
(..)
for (i = 0; i < numSegments; i++) {
int streamld = i \% num_streams
int segmentStart = ...;
..
asyncCopy(&d_part—>x[segmentStart], &h_part—>x[segmentStart], ..., HtoD, stream|[streamlId]);
(..)
TPB = 1024; NBlocks = (elementsInSegment + TPB — 1) / TPB;
interp_kernel <<<NBlocks, TPB, 0, stream|[streamId]>>>(&d_part->x[segmentStart], ...)

synchronize ();

// Synchronous DtoH
copy (h—>rhon_flat , d—>rhon_flat, ..., DtoH)
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