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Abstract—Simplified neuron models like AdEx need exten-
sive parameter fitting to faithfully replicate experimental neu-
ron spiking behaviour. Traditional approaches use derivative-
free methods (grid search, genetic algorithms), while gradient-
based frameworks like Jaxley have shown success for HH-
type models but lack support for simplified models due to
their non-differentiable spike mechanism. We address this by
implementing surrogate gradient-enabled AdEx in Jaxley and
investigate which loss functions enable successful parameter
fitting in bio-physical simulations. OQur evaluation on striatal
projection neuron recordings reveals that loss function design is
critical when adapting gradient-based optimization. MSE-based
optimization fails due to spike timing sensitivity, converging to
non-spiking solutions. Feature-based losses better capture firing
patterns, though both approaches achieved I' ~ 0 for spike
timing precision. These results highlight that adapting gradient
techniques for biophysical fitting requires domain-specific loss
functions rather than standard approaches.

Index Terms—Automatic Gradient Descent, Integrate-and-Fire
Model, Simplified Neuron Model, Surrogate Gradients, Parame-
ter Estimation

I. INTRODUCTION

In the last century, studying and modelling neurons has been
seen as the gateway of understanding the brain in its entirety.
What first started with very simple Leaky Integrate-and-
Fire (LIF)-models, quickly became proving ground for more
complex and more sophisticated ideas. Lack of computational
resources has been a primary driver for why simplified neuron
models were still developed, because they promised to be the
only way to really model parts of the brain on super computers
20 years ago. With the steady increase in computing power, the
research community shifted focus from those models in favour
of more sophisticated Hodgkin-Huxley (HH)-type models,
which require more computational resources to simulate and
to fit parameters to. However, the idea of simulating the brain
as whole has remained an unreachable goal for many decades,
until now.

Computational power has reached whole new levels, and
using computationally less intensive simplified models might
be the key step to perform whole brain simulations. Adaptive
models like Adaptive Exponential Integrate-and-Fire (AdEx)
can faithfully capture the firing behaviour of diverse neuron
types and therefore promise to be a prime candidate for
realistic large-scale simulations. However, this needs very fast

and efficient, reliable, and effective optimization methods to
fit neuron models to experimental data. Due to the non dif-
ferentiable nature of simplified models, optimization methods
like grid search or evolutionary algorithms are used instead of
gradient methods.

In this work, we investigate whether surrogate gradient
techniques can enable gradient-based parameter estimation for
simplified neuron models. Specifically, we ask:

1) Can surrogate gradients produce useful parameter up-
dates for the AdEx model? And
2) what loss function design is required to achieve success-
ful optimization?
To investigate this, we make the following contributions:

1) We implement a surrogate gradient-enabled AdEx model
within the Jaxley framework, enabling gradient-based
parameter optimization.

2) We investigate loss function requirements and compare
voltage-based Mean Squared Error (MSE) loss against
feature-based losses.

3) We find that MSE-based optimization fails to recover
correct spiking behavior. While feature-based losses bet-
ter replicated overall firing behaviour, significant chal-
lenges remain. Spike timing remains a crucial challenge.
Both approaches failed to achieve useful spike timings
— we measured a coincidence factor I' ~ 0.

Further work is needed to enable efficient and effective pa-
rameter optimization using gradient-based optimization.

In this work we will demonstrate how to bridge two worlds:
combine gradient optimisation using Jaxley for using simpli-
fied models in bio-physical neuron simulations. We start giving
a brief background introduction in Section [IIj and an overview
over the related work in In Section [[V] we introduce our
methodology, Section|[V]|contains our findings and Section
concludes with a discussion of the findings and future work.

II. BACKGROUND

A. Neuron Models

Large-scale brain models are limited in size mostly by
computational feasibility. Detailed bio-physical models like
the HH-model can precisely predict membrane behaviour of
a vast variety of neuron types. However, they require huge



computational resources to estimate the required parameters
to fit the models to experimental data. Simplified Neuron
Models models overcome this challenge, capturing most of
the sophisticated neuron behaviour with only a fraction of the
computational cost, enabling large-scale simulations [1]. The
Adaptive Exponential Integrate-and-Fire (AdEx) model [2]]
provides a particularly interesting balance — it reproduces a
variety of firing patterns but drastically reduces the number of
necessary parameters of the model. This makes it a favourable
model for large-scale neuron simulations [3].

The AdEx model improves the simpler LIF model in
two ways: first, it introduces exponential behaviour when
initialising the spike. Second, the model allows for adapta-
tion, meaning it can change spiking frequencies or post-spike
refractoriness based on their firing history. It is defined by the
equations given in [2], [4]:
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It describes the membrane potential over time V' (¢) given
an injected current I(t). Equation describes the change
of potential. C' is the membrane capacitance, g; the leak
conductance and Ej, the effective resting potential. We can
understand —g7,(V — Ep) as the leak current that slowly
pulls the membrane potential towards its resting potential.
gLAT exp(%) models the depolarisation initialised by the
fast reacting sodium channels using an exponential function,
modelled using a driving force based on an effective threshold
potential V7 and a slope factor Ar. I is the injected current,
and w is the adaptation current, which is described in equation
2

The adaptation mechanism is controlled via an adaptation
current which opposes depolarisation. Unlike the fast mem-
brane behaviour, this current is related to the time constant
Tw, Which controls the decay time. It is controlled by a (sub-
threshold adaptation) as well as b (spike-triggered adaptation).

Even though the number of parameters is significantly
reduced compared to bio-physical HH-type models, it still re-
quires parameter fitting — especially because some parameters
(e.g. a, b or 7,,) do not have direct physiological counterparts
(like C or gr). For AdEx to perform as an effective tool,
efficient methods for parameter optimizations are essential.

B. Parameter Tuning for Neuron Models

A central challenge in neuroscience has been to ’identify
the parameters of detailed biophysical models, such that they
match physiological measurements at scale’ [5]] in reasonable
simulation runtimes. The zoo of optimisation techniques is
large, spanning from evolutionary algorithms [6]] to gradient

descent [7]], however, deciding which algorithm to use may
often depend on the underlying properties of the model.
Jaxley [3[, a newly developed framework, uses automatic
differentiation to quickly fit parameters of sophisticated bio-
physical models to experimental data and perform large-
scale neuron simulations. Specifically, Jaxley allows to
simulate multi-compartment models with complex structures
(dendrites, axons), cable theory equations and HH-type ion
channels. To perform parameter optimisation, Jaxley uses
automatic differentiation (via Jax). It shows very promis-
ing results, matching or outperforming other state-of-the-art
(e.g. genetic algorithms) in performance for small and large
neuron models respectively. However, as previously stated, in
many circumstances it still remains unfeasible to use HH-
type models for large-scale simulations. Jaxley fails to
support simplified models to perform parameter tuning. The
fundamental limitation is that simplified models are not by
default automatically differentiable. This is a result of the reset
condition in equation [3] Addressing this issues requires special
treatment: surrogate gradients.

C. Surrogate Gradients

Surrogate Gradients (SGs) were developed to adapt spiking
neurons (usually using LIF neuron models) for training, pri-
marily on classification tasks. To fit these models to real data,
the typical forward pass - backward pass strategy needed to
be enabled. Because LIF-type models have a discontinuous
derivatives (see reset in equation , automatic differentiation
cannot be performed without adjustments. To overcome this
issue, prior work replaced the discontinues (heavyside-) func-
tions derivative with a (e.g. sigmoid) surrogate, but only for
the backward pass [8]. For training weights in Spiking Neural
Networks (SNNs), this performed sufficiently well.

III. RELATED WORK

Simplified Neuron Models historically were a necessity to
deal with the fact that computing resources were too limited
to perform large scale brain simulations with sophisticated
ion-channel based models. With the rise of cheap and widely
available supercomputing, focus shifted back to more detailed
HH-type model. In recent years however, interest in simplified
models resurged, driven by mainly two reasons: researchers
wanting to progress Artificial Neural Networks (ANNs) to
use more detailed spiking neurons and computational neuro-
scientists getting closer to feasibly simulating whole mammal
brains.

A. Parameter Estimation for AdEx Model

A neuron model has to replicate behaviour of a huge variety
of neurons. In simplified neuron models like AdEx, some
parameters lack a real (measurable) counterpart. Therefore
parameters have to be estimated using optimisation techniques.
Traditionally, a huge variety (from evolutionary strategies to
particle swarm optimizations) of approaches were used [6]. A
very recent paper uses grid search over a feature space, not



gradients [9]. Recently genetic algorithms, multi-state single-
agent stochastic search (MSASS) or Teaching-Learning-Based
Optimization (TLBO) have been used successfully to tune pa-
rameters for the AdEx model to real voltage-clamp recordings
[10], [L1]. However, these approaches tend to use a lot of
computational resources.

Hertag et al. [12] developed an analytical approximation to
the AdEx model to speed up computations. Using automatic
differentiation could also address this issue. Jones et al. [[7] and
Deistler et al. [5] demonstrated that gradient-based methods
can effectively parametrize HH-type models. However, they
require the inherently differentiable nature of HH-type models.
Simplified models require additional treatment to benefit from
this technique.

B. Parameter Learning using Surrogate Gradients in Spiking
Neural Networks

Previous work explored using surrogate gradients for train-
ing weights of SNNs in classification tasks [8], [13], [14].
Gerum and Schilling [[13]] explored different surrogates (like
sigmoid or esser function) to train a LIF based Neural Network
(NN) for image classification tasks. The authors used Keras
to perform automatic differentiation and backpropagation.
Perez-Nieves et al. [14] used a sigmoidal surrogate gradient
in the backward pass to train a spiking NN in PyTorch to
perform a variety of different classification tasks. However,
their work focuses on training network weights on task-based
classification tasks.

Recent theoretical work [15] clarifies why surrogate gra-
dients succeed despite approximating the true gradient. But
fitting biophysical parameters to experimental recordings poses
a different challenge: the loss function must quantify similarity
between simulated and recorded spike trains. Whether standard
choices like mean squared error suffice — or whether domain-
specific alternatives are required — remains unexplored. This
work investigates this question.

C. Benchmark Sets for Neuron Models

Neuron models are highly specialised and are fit to very
specific data. Therefore it proves to be difficult to compare
models systematically. Jolivet et al. [16] introduce a coinci-
dence factor, which allows to evaluate neuron models. We use
this concept to evaluate the quality of our trained parameters.

IV. METHODOLOGY

This work introduces two contributions: firstly, we imple-
ment the AdEx model within Jaxley, providing both stan-
dard and surrogate gradient variants. The surrogate implemen-
tation can easily adopted to Jaxleys existing simplified models:
LIF and Izhikevich. Secondly, we use Jaxley to perform
gradient-based optimisation. We investigate two different loss
functions:

« MSE

e Guarino et al. [9] feature-based loss function.

Using gradient-based optimisation requires a differentiable
loss function. Therefore we will introduce a gradient version
of the feature-based loss function.

A. Integration of Surrogate Gradients into Jaxley

Jaxley is built on top of JAX and leverages its auto-
matic differentiation capabilities for gradient-based param-
eter optimisation. Neuron dynamics in Jaxley are de-
fined through Channel classes, which specify three core
methods: update_states () for state variable evolution,
compute_current () for membrane current contributions,
and init_state () for initialisation of state variables.
During simulation, JAX traces these functions to construct a
computational graph, enabling automatic gradient computation
and backpropagation.

1) The Differentiability Problem: Simplified neuron models
employ a discrete reset mechanism when the membrane poten-
tial crosses a threshold. This reset is mathematically expressed
using the Heavyside step function H:

1 ifv> vy

H(v—vy) = { 4)

0 otherwise

The derivative of the Heavyside function is zero almost
everywhere (and undefined at the threshold):

OH

— =0 for v # vy 5)
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This causes gradients to vanish during back-propagation
through spike events, which prevents gradient-based optimi-
sation from working.

2) Surrogate Gradient Approach: To overcome this limi-
tation, we employ surrogate gradients [8]: the forward pass
uses the original Heavyside function to maintain correct spike
dynamics, while the backward pass substitutes the func-
tion with a surrogate. This is implemented in JAX using
jax.custom_vjp, which allows defining custom vector-
Jacobian products.

We implement three surrogate gradient functions, each
providing different gradient characteristics:

Sigmoid surrogate:
oH
8725'0(595)'(1_0(517)) 6)

x
where o is the sigmoid function and S controls the steepness.
Exponential surrogate:
oH
o B - exp(—pz|) (7)
SuperSpike surrogate [17]:

OH 1
oz~ (Bl 11 ®)

All three surrogates are centred at the threshold (x =
v — vy). The hyperparameter 3 controls the sharpness: higher

values produce steeper gradients at the threshold, while lower
values spread the gradient over a wider voltage ranges.



3) Implementation Details: We reformulate the conditional
reset from a discrete selection:

rese f k
Unew = {” et 1 IR ©)
v otherwise
to a continuous, differentiable form:
Unew :s'vresel+<1_5) *v (10)

where s = H(v—uvy,) is the surrogate spike indicator, to ensure
differentiability through the reset mechanism. This formulation
allows gradients to flow through the reset operation.

This approach can easily be applied to the existing LIF
(FireSurrogate) and Izhikevich models in Jaxley, not
only to the newly implemented AdEx model (AdExSurro—
gate).

B. AdEx Model Implementation

We implement the AdEx model as a Jaxley channel, fol-
lowing the formulation by Brette and Gerstner [4] (see Equa-
tions [IH3). Unlike HH-type channels that contribute currents
to a shared voltage solver, simplified models like AdEx handle
voltage integration directly within their update_states ()
method. We follow the implementation pattern of [5].

1) Numerical Integration: The AdEx model consists of two
coupled differential equations requiring different numerical
treatment:

Adaptation current w: Equation [2] is a linear dynamic
system in w, allowing the use of exponential Euler integration.
It has the analytical solution

w(t+At) = w(t)-e 2™ 4 o(V —EL)(1—e 2/7) (11)

which gives increased numerical stability compared to e.g.
forward euler methods.

Membrane potential V: The exponential term in Equa-
tion [T makes this equation nonlinear, requiring forward Euler
integration:

V(t+At) = V(t) + At - %

To prevent numerical overflow from the exponential spike
mechanism, we clamp the argument:

exp (V;TVT> — exp <min <V;TVT, 10>> (13)

2) Spike Detection and Reset: After each integration step,
we check for threshold crossing (V' > Ugpreshola)- If the
threshold is crossed, we apply the reset conditions from
Equation [3] For standard LIF, AdEx or Izhikevich, this
uses jax.lax.select () for conditional assignment. In
the differentiable variants, we use the continuous formulation
described in Section [[V] for both V' and w:

(12)

%ewzs"/r'i‘(l_s)"/v
Whew = S+ (W +b) + (1 —s) - w,

(14)
(15)

where s : V' — [0, 1] is the surrogate of the heavyside function.

TABLE I
ADEX MODEL PARAMETERS AND DEFAULT VALUES.

Parameter Symbol  Default Unit
Membrane capacitance C 200 pF
Leak conductance qr 10 nS
Leak reversal Er -70 mV
Threshold potential Vr -50 mV
Slope factor Ar 2 mV
Reset potential V: -58 mV
Detection threshold VUthreshold 0 mV
Adaptation time constant Tw 30 ms

Subthreshold adaptation a 2 nS
Spike-triggered adaptation b 0 PA
Stimulation current 1 500 PA

3) Model Parameters: Table |l summarises the AdEx pa-
rameters and their default values. Parameters without direct
physiological counterparts (e.g., a, b, 7,,) are primary targets
for optimisation.

AdEXx is defined using absolute capacitance (pF'). However,
Jaxley is targeted at bio-physical HH-type simulations, and
therefore works with cell morphology and gemoetries. It there-
fore expects specific capacitance (uF/em?). To circumvent
this problem, we compute a fictitious cylindrical geometries
whose surface area yields the desired total capacitance as-
suming jaxleys standard specific capacitance (1uF/cm?). This
scales injected currents to maintain correct dynamics.

C. Implementation Verification

To verify the correctness of our AJdEx implementation, we
compare simulation outputs against Brian2 [18]], a widely-used
reference simulator for spiking neural networks.

1) Comparison Setup: Both simulators are configured iden-
tically:

o Time step: At = 0.01 ms

o Simulation duration: 500 ms

 Stimulation duration: 400 ms

o Initial conditions: V(0) = V., w(0) =0

2) Test Cases: We evaluate three parameter configurations
from Naud et al. [2] that produce distinct firing patterns:

Tonic spiking:

Regular spiking without spike-frequency adaptation, serving
as a baseline case. The parameters are the default parameters
(see D).

Adaptation:

Strong spike-triggered adaptation with slow decay, producing
decreasing firing rates over time. The parameters used are
Cpn = 200, g, = 12, Ef, = =70, vp = =50, Ap = 2,
Uy = —b8, Vthreshold = 0, T = 300, a = 2, b = 60, I = 500.

Original parameters [4]:

The original parameter set from Brette and Gerstner, demon-
strating combined adaptation mechanisms. The parameters
used are C,, = 281, g, = 30, E;, = —70.6, vy = —50.4,
AT = 2, Vr = —70.6, Vthreshold — 20, Tw = 144, a = 4,
b= 80.5, I = 2500.
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Fig. 1. Left to right: tonic, adaption and original parameters. Tonic and adaption parameters refer to the parameters provided by [2], original parameters are
the parameters used in the original AdEx paper [4]. Top row shows the simulated voltage traces. Interesting to note is that when the threshold is reached, the
voltage is reset in the same time step. This leads to the voltage never crossing the threshold line in the recordings. Second row displays the adaption current
w. Last row compares the spike timings between Brian2 and Jaxley. We expect minor numerical differences, mainly to the fact that different integration

methods are used.

3) Comparison Metrics: We assess implementation correct-
ness through:

« Visual comparison: Overlay of voltage traces from both
simulators (Figure [I).
o Spike count: Both implementations produce identical
spike counts for all test configurations.
o Spike timing: Maximum absolute difference in spike
times max; |17 — ¢B12| < 1 ms,
D. Parameter Optimisation Evaluation

To evaluate the effectiveness of gradient-based optimisation
with surrogate gradients, we fit AdEx model parameters to
experimental voltage recordings.

TABLE I
INITIAL ADEX MODEL PARAMETERS AND TRAINABILITY

Parameter Symbol  Initial Value Trainable
Membrane capacitance Chm 200.0 pF No
Leak conductance ar 10.0nS Yes
Leak reversal potential by, —68.0mV Yes
Spike threshold Vr —45.0mV Yes
Slope factor Ar 2.0mV No
Spike detection threshold Vihreshold —20.0mV No
Reset potential Vieset —55.0mV Yes
Adaptation time constant Tw 100.0 ms Yes
Subthreshold adaptation a 2.0nS Yes
Spike-triggered adaptation b 1.0pA Yes

1) Dataset: We use intracellular recordings from striatal
projection neurons provided by Johansson and Silberberg
[19]. The dataset contains voltage traces from four distinct
striatal neuron types, recorded under current-clamp conditions.

However, we only used a single traceﬂ mainly due to time
constraint. This is a serious limitation and will be addressed
in future work.

2) Optimisation Setup: We optimise the following subset
of AdEx parameters: {gr,, Fr, Vr,a,b, Tw, Ureset }. Parameters
{Cny AT, Vihreshola Were fixed. Initial parameters are given in
Table [

We evaluated two different loss functions: MSE and a
differentiable version of a feature based loss developed by
Guarino et al. [[9]], which we will name Guarino loss for the
remaining report. Detailed hyperparameters can be found in
Table [T} however, most parameters are chosen arbitrary. No
extensive hyperparameter tuning was conducted. We plan on
revising this in future work.

E. Loss Functions

1) MSE: Our initial approach was to use MSE as a loss
function. It is defined as

1 T
Lus(0) = 7 D (Vim(£:0) = Ve (£)*, (16)
t=1

where 6 denotes the trainable parameters.

We were not able to achieve any sensible results using this
loss function. Since other works mainly use feature-based loss
functions, we implemented one as well.

2) Feature-Based Loss: Simplified neuron models are usu-
ally not required to perfectly imitate the voltage trace of a
neuron. Their main requirement is to faithfully replicate the

I Files can be found here, Voltage file: ECBL_IDthresh_ch5_553.dat
Current file: ECBL_IDthresh_ch4_553.dat


https://github.com/a1eko/humanspn/tree/df6ec55178c81e64fdcf4ae79aaa1872458c621f/models/optimisations/mCP-dspn-e150917_c6_D1-manimal_1_n24_04102017_cel1/expdata

TABLE III
TRAINING HYPERPARAMETERS FOR ADEX OPTIMIZATION

Parameter MSE Guarino
Optimization

Optimizer Adam Adam
Learning rate 0.1 0.1
Gradient clipping (global norm) 2.0 2.0
Number of epochs 500 500
Surrogate Gradient

Surrogate type sigmoid  sigmoid
Surrogate slope 25.0 25.0
Loss-Specific Parameters

Normalize False —
Temperature (7) — 0.3
Beta (3) — 10.0
Missing feature penalty — 3.0
Guarino Feature Weights

W — 5.0
Witgecond - 3.0
Wt hirg - 2.0
Wt — 1.0
Winy_first_IST — 2.0
Winy_last_ISI — 1.0
Wfiring_freq - 1.0
WVim_end — 0.5
Simulation

Max stimulus duration 500 ms
Spike threshold —20mV

firing behaviour. Rather than comparing raw voltage traces,
Guarino et al. [9] proposed a loss function based on electro-
physiological features: To capture the essential characteristics
of a neuron, they identified:

o Spike timing: time to first (¢1), second (¢2), third (¢3),
and last spike (tas),

o Interspike intervals: inverse of first ISI (ﬁ) and last
ISI (551-),

o Firing rate: mean firing frequency over the stimulus
duration,

o Subthreshold behaviour: membrane voltage at stimulus

end (‘/slimend )

The loss is computed as a weighted sum of relative errors:
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where f5™ and f;*? denote simulated and experimental feature
values respectively, and w; are feature-specific weights. When
a feature is present in the experimental data but absent in the
simulation (e.g., the experimental trace has three spikes but
the simulation produces only one), a fixed penalty is added
to encourage the optimizer to produce the correct number of
spikes.

This feature-based formulation addresses the spike timing
sensitivity problem inherent to MSE: small temporal misalign-
ments no longer produce catastrophic loss values, as long as
the overall firing pattern—captured by the features—remains
similar.

3) Differentiable Feature-Based Loss: The feature-based
loss requires extracting spike times and counts from voltage
traces. Standard implementations use hard threshold cross-
ings, which are non-differentiable. To enable gradient-based
optimization, we developed soft approximations of the feature
extraction operations.

The core idea is to replace discrete spike detection with
continuous values. The AdExSurrogate channel outputs a soft
spike indicator s(t) € [0, 1] at each time step. The soft spike
count becomes simply N;&ﬁes =, s().

For spike timing, we use cumulative sums to identify when
the n-th spike occurs and compute a weighted average over
time. Similarly, ISI features are derived from the difference
between consecutive soft spike times. Features that require a
minimum number of spikes (e.g., ISI needs at least two spikes)
are weighted by soft validity flags that smoothly transition
based on the spike count.

The soft approximations introduce two hyperparameters: a
temperature 7 that controls how sharp the spike selection is,
and a sigmoid steepness [ for the masking operations. We
used 7 = 0.3 and 8 = 10.0 based on initial experiments.

We note that this differentiable feature extraction is a work-
ing implementation that has not been thoroughly validated.
Due to time constraints, we did not perform extensive testing
of the soft approximations against their hard counterparts, nor
did we systematically tune the hyperparameters. The approach
produces gradients and enables optimization, but the accuracy
of the soft features compared to exact values remains to be
studied in future work.

4) Evaluation Metrics:
mance through:

We assess optimisation perfor-

o Visual comparison of fitted vs. experimental traces
o Coincidence Factor for Spike Train Evaluation

The Coincidence Factor for Spike Train Evaluation
I" measures spike timing prediction quality, normalized by
chance level. It is given by

_ Ncoinc - <Ncoinc> 1
N 0-5(Ndata + Nmodel) 1-— QfA

where N, describe coincidences within +=A (default 2ms)
and f is the model firing rate.

In other words, it describes how good it compares to a
random firing pattern. I' = 1 means perfect prediction whereas
I' = 0 is the same as chance level. I' < 0 therefore means it
behaves worse than chance.

Jolivet et al. achieved a I" value of =~ 0.82 — 0.83 for their
well-fitted AdEx models. We use this to compare our fitted
parameters.

r (18)

V. EXPERIMENTAL SETUP

All experiments were conducted on a 2020 Apple Ml
Silicon Mac. Software is written in python and executed using
python version 3.14.2. The implementation is built on Jaxley
version 0.12.0. Comparisons were performed using the Brian2
simulator 2.10.1. Full list of software versions is found in the
requirements.txt


https://github.com/paulmyr/DD2375-HT25-Project-Course-in-High-Performance-Computing/blob/master/requirements.txt

TABLE IV
SPIKE TIMING COMPARISON BETWEEN JAXLEY AND BRIAN2
IMPLEMENTATIONS.

Tonic  Adaptation  Original
Spike count 52 10 64
Max timing diff. (ms) 0.54 0.58 0.82
Mean timing diff. (ms) 0.28 0.27 0.42
VI. RESULTS

A. AdEx verification

Running veriﬁcationﬂ against Brian2 gave the following
results: Figure [I] demonstrates almost perfect overlap. The
biggest differences are in spike magnitude. We note that both
brian2 and jaxley results do not cross the detection threshold
in the recording. This is an artefact due to how we record
the simulated potentials. The integration step is computed and
then the new voltage value is stored. When the integrated value
crosses the threshold, the voltages are reset before the value
is recorded, meaning in this all voltage recordings are below
Uthreshold -

We measured the difference between spike timings. Table[[V]
shows the measured results. We identify over different spiking
behaviour, both simulations produced identical amount of
spikes. The measured maximum timing differences between
spikes was < 1ms for all runs, the mean difference between
spikes was < 0.5ms. Given the sensitivity of the exponential
spiking initiation zone and the fact that different numerical
integration was used for the adaption current, we were satisfied
with the similarity of the results and concluded that the
implementation is correct.

B. Surrogate Gradient verification

To verify the surrogate gradient implementation we first
computed the gradient of a simple loss function (number
of spikes) after stimulating the cell. The produced gradients
are zero for the default implementation and non-zero for the
surrogate model. We visualized (see Figure |2)) the backward
pass to verify compare different surrogate types (Sigmoid,
Exponential, SuperSpike) — all peak around threshold of the
heavyside-function.

Forward Pass: Hard Threshold Backward Pass: Surrogate Gradients

— Hard threshold

out
[
Gradient
|

Fig. 2. Left: heavyside function in the forward pass. Right: different surrogate
gradients, all centred around the threshold.

Voltage Comparison Training Loss (MSE)
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— Ssimulated

0 100 200 300 400 500 600 0 100 200 300 400 500
Time (ms) Epoch

Fig. 3. Left: simulated voltage using parameters trained using MSE loss.
Right: loss over training epoch, it converges into non spiking behaviour, trying
to minimize sub-threshold loss

C. Parameter Estimation using MSE

The natural first approach for parameter estimation is to
minimize the MSHI6 between simulated and experimental
voltage traces. However, our experiments indicated that this
loss function is fundamentally unsuitable for spiking neu-
rons. A core problem is spike timing sensitivity: even when
simulated and experimental traces exhibit similar firing pat-
terns, small temporal misalignments between spikes create
disproportionately large MSE values. Consider two traces with
identical spike counts and frequencies, but with spikes offset
by 2 ms. During each spike, the voltage difference can exceed
100mV (from resting potential to spike peak), resulting in
enormous per-sample errors that dominate the loss. This timing
sensitivity manifests in a highly non-convex loss landscape.
The gradient at any point reflects primarily the instantaneous
voltage mismatch rather than structural similarity of the spike
trains. Consequently, gradient descent steps often move pa-
rameters in directions that reduce voltage error at specific time
points while disrupting the overall firing pattern.

Additionally, perfect spike time matchings are punished.
This is because AdEx values are reset before the jaxley
simulator records the voltage trace — if experimental data and
simulation data would spike at the exact same time, the loss
would be huge (AdEx is at V., experiment is at Vjear). This
enforces a mismatch between spike timing and simulation.

We attempted MSE-based optimization using the same
experimental recordings and training setup described in Sec-
tion The optimizer converged to parameter configura-
tions that minimized voltage deviation during subthreshold pe-
riods but failed to produce correct spiking behaviour. In many
runs, the model either stopped spiking entirely (eliminating
spike-related MSE contributions) or produced spike patterns
uncorrelated with the experimental data.

This leads us to believe that MSE loss, while theoretically
sound for continuous signals, is ill-suited for discrete event
(spike) matching. The loss function must capture what features
matter rather than demanding exact sample-by-sample voltage
alignment.

D. Parameter Estimation using Feature-Based Loss

Since spiking timings are the most important aspect if
a simplified neuron model, using a feature-based loss was

2Test can be run in Google Colab


https://colab.research.google.com/github/paulmyr/DD2375-HT25-Project-Course-in-High-Performance-Computing/blob/master/5_evaluation/notebooks/jaxley_test_adex.ipynb
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Fig. 4. Left: simulated voltage using parameters trained using guarino loss
(best performing parameters, lowest loss). Even though parameters are not
well-fitted enough to faithfully reproduce neuron behaviour, it shows better
approximation behaviour than MSE loss altogether. Further improvement and
verification needed to confidently evaluate this approach. Right: loss over
training epoch. Loss does not decrease monotonically, indicating non-convex
parameter space.

an attempt to shift the training behaviour in this direction.
The training setup of the feature-based optimization is also
described in Section First experiments indicated that
trained models did in fact better capture overall behaviour of
the underlying experiments. For example, the number of spikes
of the fitted model often matched (or got close) the number
of spikes of the underlying experimental data. Spike timing
of the first spike were consistently closer than in MSE trained
models (or in arbitrary parameter constellations).

Training loss in different training runs did not decrease
monotonically, as can be seen in Figure ] This indicated
to us a non-convex parameter space, at least in regards to
this specific loss function. Training was also very susceptible
to the starting parameters. Often parameters did not change
drastically in result of the training, indicating that computed
gradients were not able to leave local minima. However, as
mentioned in Section we want to clarify that this part
of the work has not been thoroughly tested and verified. A
lot more quantification and testing has to be done for more
reliable evaluation of this loss function.

E. Coincidence Factor

To evaluate the performance of the two loss functions, we
measured spike timing prediction quality using the coincidence
factor I' from Jolivet et al. [16]], with a coincidence window
A = 2ms. This means that according to Jolivet’s metric, both
fitted model perform equally good as firing at chance.

We attribute this to the following reasons:

+ Non-convex parameter-space: The AdEx model has
many interdependent parameters. This results in a non-
convex optimization landscape with numerous local min-
ima. Gradient-based optimization methods can easily
become trapped in suboptimal regions that produce in-
correct spike timing despite achieving low training loss.

o Limited training data: The models were trained on a
single experimental trace with one stimulus condition. We
don’t think overfitting was a particular problem, but future
work might want to build a more robust training system.

o Surrogate gradients: The use of a surrogate for the
discontinuous spike mechanism may change the model

dynamics and could have introduced bias to the optimiza-
tion.

o More careful loss function design: Due to time con-
straints, there was no tweaking of feature weights etc. in
the feature-based loss function. A lot more careful loss
function tuning could greatly improve the results of the
training.

o Skewed voltage representation: The recorded voltages
in the simulation don’t capture the true spike of the action
potential. Especially non-feature based loss functions
(e.g. MSE) are inherently limited in how well they can
reproduce spiking behaviour.

Future work could address these limitations by carefully ad-
justing spike-timing-aware loss functions, training on multiple
stimulus conditions or changing the recording behaviour of the
simulation.

VII. DISCUSSION AND CONCLUSION

We successfully implemented the AdEx model in Jaxley and
enabled automatic differentiation through surrogate gradients.
We discovered that MSE is fundamentally unsuitable for
training spiking behaviour. Feature-based losses show more
promising optimization results, however, differentiability of
the loss function as a fundamental requirement makes this
a non-trivial problem to tackle. First evaluation showed that
spike timing precision remains challenging, however it is a
crucial requirement for useful bio-physical neuron simulations.

Loss function design remains a challenging problem and is
critical when bridging SNN techniques to biophysical fitting.
Therefore, SNN techniques can’t directly be transferred into
the neuroscience domain, it requires more domain-specific
adaptations.

The main limitation of this work include that no accurate
parameters could be produced. We only tested on a single neu-
ron type and recording, making this work non-generalizable.
Also, runtime- and convergence performance is not addressed
because useful parameter results were the primary concern.

Future work can address all these issues by optimizing the
loss functions, can increase the neuron types and training setup
as well as introduce a more thorough comparison with other
state-of-the-art genetic / feature-based algorithms. A thorough
evaluation and comparison of different surrogate gradients is
still missing, which in itself plays a big role in how the
parameters are adjusted based on the computed loss.

We bridged two worlds: Gradient optimization methods
using surrogate gradients and parameter fitting for simplified
biophysical models. We discovered that loss function design
matters more than the optimization algorithm and were able
to produce a testing framework that showed exactly this. The
main contribution was to implement a differentiable AdEx
model in Jaxley and gained an understanding of loss function
requirements.
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Fig. 5. Top row: experimental data. Shows voltage trace of striatal projection neuron in a current-clamp experiment. Neuron performs thirteen approx.

equidistant spikes. Second row: simulation using arbitrary default parameters pre training. Third row: voltage trace of trained model using MSE-based loss.
Bottom row: voltage trace of feature-based guarino loss. Approximates spike timings of first three spikes more precisely than default parameters, but fails to
recreate correct number of spikes in this instance.
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