
DD2356 VT25 Methods in
High Performance Computing

Final Project: 1D FDTD Simulation
Rishi Vijayvargiya†

rishiv@kth.se

Paul Mayer†

pmayer@kth.se

Lennart Herud †

herud@kth.se

Prefix

The code for our project can be found at this location: https://github.com/paulmyr/DD2356-MethodsHPC/tree/
master/5_project.

Contents

1 Serial Implementation and Correctness 2
1.1 Serial Runtimes . 2
1.2 Correctness . 2

2 Parallelism through OpenMP 2
2.1 Implementation description . 2
2.2 Strong and Weak Scaling . 3
2.3 Discussion . 3

3 OpenMP GPU Hand-off 3
3.1 Implementation Description . 4
3.2 Runtimes . 4
3.3 Discussion . 4

4 Parallelism through MPI 4
4.1 Implementation Description . 4
4.2 Strong and Weak Scaling + Communication Overhead . 5

5 Optimizing MPI Parallelism 5
5.1 Attempt 1: Communication-Computation Overlap w/ Non-Blocking Halo Exchange 5
5.2 Attempt 2: OpenMP Parallelism w/ Non-Blocking Halo Exchange . 7

6 Conclusion 7

Appendix 9
Std Dev, Min, Max Runtimes . 9
GPU hand-off code listing . 9
Verification results . 9

†Authors made equal contribution to the project

1

https://github.com/paulmyr/DD2356-MethodsHPC/tree/master/5_project
https://github.com/paulmyr/DD2356-MethodsHPC/tree/master/5_project

1 Serial Implementation and Cor-
rectness

The serial implementation provides our optimization base-
line.

1.1 Serial Runtimes

We varied the grid size on Dardel on 1 node and exam-
ined the runtimes of the provided serial implementation.
Figure 2 shows the runtimes obtained. The runtimes in-
crease exponentially (linearly on a logarithmic scale) with
an exponential increase in the input size. The input size
throughout this report refers to the number of elements
in the E and H lists. The Slurm script required to gener-
ate this plot along with the runtimes can be found in the
1_baseline directory of the repository.

The results in Figure 2 are within our expectations, as
we would expect the amount of work to be done (without
any parallel intervention) to increase in proportion with
the increase in the input size.

1.2 Correctness

We check the implementation correctness of our optimiza-
tions against the baseline implementation by visual in-
spection of the intermediate and final values of the e-field.
To implement this, the e-field values are printed into sep-
arate files and matched against each other. Additionally
the peak position at the final time step is validated against
the peak position of the serial implementation.

For both verification methods our results comply with
the given code, yielding identical results. Figure 12 shows
the final e-field for all implementations. Due to the scal-
ing these e-fields look like a single Dirac-impulse instead
of two pulses. The numerical results in Table 1 show that
there are indeed two independent and symmetrical peaks,
which are identical with the estimated peaks of the serial
implementation.

Additionally we checked for different NX sizes. Figure
13 shows that for large enough grid sizes (NX > 400) the
simulation result of the given reference simulation is sta-
ble and yielding two symmetrical peaks, while for small
grid sizes (NX <= 400) this tends to shift to point sym-
metrical peaks, which we assume is due to the absorbing
boundary conditions interfering. To adjust for this, we
chose sufficiently large grid sizes (NX > 400) to ensure

correctness and large enough array sizes to generate com-
putational load for our implementations.

Figure 2: Serial Implementation Runtime

2 Parallelism through OpenMP

The code for this section is present in the 2_openmp di-
rectory. The dardel_runtimes subdirectory contains the
runtimes plotted in the graphs below, which were aver-
ages across 3 runs. Additionally, the outputs/ directory
contains the snapshots of E and H at different time-steps
for the serial and parallel implementation(s), which were
used to verify correctness using the verify_outputs.sh

script.

2.1 Implementation description

We started the optimisation process using shared memory
parallelisation. The main loop of the computation exists
of two update methods, each of them performs a simple
for-loop. We noticed that all iterations of the loop are
embarrassingly parallel. The easiest parallelisation strat-
egy is to split up the iterations on multiple workers. Since
we assume a shared memory architecture, communication
is needed, in the sense that workers have to exchange in-
formation.

OpenMP provides a very simple but effective directive
for exactly this situation: #pragma omp parallel for.
When checking on Dardel, which scheduling is used as a
default, we found that the default is
#pragma omp parallel for shedule(static, 0),
meaning that the scheduling used is a static scheduler
with unspecified chunk size. We tried different schedul-

(a) Strong Scaling (6.4 mil, 1k iters) (b) Weak Scaling (100k/thread, 1k iters)

Figure 1: Strong and Weak Scaling (OpenMP)

Page 2 of 11

ing approaches, different chunk sizes or initialising only
a single parallel region once; however, we were not able
to outperform this first, most simplest approach. In the
OMP documentation1 we find:

When kind is static, iterations are divided
into chunks of size chunk size, and the chunks
are assigned to the threads in the team in a
round-robin fashion in the order of the thread
number. Each chunk contains chunk size it-
erations, except for the chunk that contains
the sequentially last iteration, which may have
fewer iterations. When no chunk size is speci-
fied, the iteration space is divided into chunks
that are approximately equal in size, and at
most one chunk is distributed to each thread.
The size of the chunks is unspecified in this
case.

This means, that the chunk size is approximately
NX/NThreads.

2.2 Strong and Weak Scaling

We performed two types of runtime tests: strong and weak
scaling. Figure 1 displays the runtimes we measured using
the static scheduling.

The strong scaling was performed by allocating one
full node on Dardel, meaning one node, one process per
node and 256 CPUs per process.

The only parameter changed was the OMP_NUM_THREADS
environment variable. Each configuration was run three
times, we display the average runtime in the plot. The
grid size for all measurements was performed with NX =
6.4 ∗ 106, NSTEPS = 1000 and the OMP_NUM_THREADS

∈ [20, 21, ..., 28]. For more information on standard de-
viation, min and max runtimes, please see the appendix
on page 9. The runtimes are depicted in Figure 1a. We
achieve logarithmic speed-up in the string scaling case,
which peaks for 128 threads. For 256 threads the runtime
remains the same (a tiny bit worse in performance than
128 threads).

In each weak scaling computation, we fixed the grid
size for each working thread to 105. The node allocation
as well as all other parameters were the same as for the
strong scaling experiments. The runtimes are depicted in
Figure 1b. For thread counts 20, ..., 26 see a near constant
runtimes, which is close to optimal performance; however,
when increasing to 128 and then 256 we see a sharp drop
in performance.

2.3 Discussion

The first important question we have to ask, is: ’why does
the default scheduler outperform the other schedulers?’
In our assessment, it mainly comes down to the fact that
each loop iteration has an approximately equal load. This
leads us to believe that reducing any scheduling overhead
by using a static scheduler is the main reason for the good
performance. Different chunk sizes mostly do more harm
than good. There is not much reason why smaller chunk
sizes would outperform bigger ones, when computational
intensity does not vary for different loop iterations. In the

worst case, for very small chunk sizes, it mostly interferes
with cache access patterns.

To correctly interpret the weak scheduling runtimes,
it is important to understand the topology of a compute
node on Dardel.

Figure 3: Dardel node topology. Image taken from ’Dardel
sustainability at a glance’[BS23]

Each node consists of two sockets with two CPUs re-
spectively. Each of those nodes has 4 NUMA nodes, each
NUMA node has 16 physical cores (32 virtual cores) avail-
able. That makes a total of 128 physical cores and 256
virtual cores. Figure 3 depicts the overall architecture of
the node. We can also see the NUMA node distances.

Due to the fact that we ran all simulations on a fully
allocated node, we expect that the OMP-Scheduler makes
use of the available resources as good as possible. This
means that if we run the code with the OMP_NUM_THREADS
environment variable set to 16, we expect OMP to sched-
ule them on 16 distinct physical cores. Under this assump-
tion, the weak scaling (see 1b) behaves as expected. For
the first 64 threads, the runtime is mostly constant. We
assume that all threads run on the same socket, meaning
very small NUMA node distances when performing mem-
ory operations. However, when running the simulation
with 128 threads, we can see a significant decrease in per-
formance. We attribute this to the fact that OMP now
has to schedule on the second socket as well (to make use
of more physical cores), which increases the runtime due
to memory synchronisation issues. When scaling to 256
threads, the performance nearly halves. This is also ex-
pected, because the physical core limit has been reached,
and now threads are scheduled to virtual cores. Under
the assumption that each of the previous 128 threads has
a high CPU load, making use of virtual cores has a small
effect on the performance.

3 OpenMP GPU Hand-off

The code for this section is present in the 2_openmp di-
rectory. The dardel_runtimes subdirectory contains the
runtimes plotted in the graphs below, which were aver-
ages across 3 runs. Additionally, the outputs/ directory
contains the snapshots of E and H at different time-steps

1https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

Page 3 of 11

https://www.openmp.org/spec-html/5.0/openmpsu41.html#x64-1290002.9.2

for the serial and parallel implementation(s), which were
used to verify correctness using the verify_outputs.sh

script.

3.1 Implementation Description

The approach is the same as described in section 2.1. How-
ever, this time we use the directive that tells OMP to hand
off the computation to the GPU. The complete directive
can be found in listing 11 in the appendix.
#pragma omp target teams distribute signals OMP
to use the GPU, whereas
map(to : E[0 : NX]) map(tofrom : H[0 : NX]) spec-
ifies which data needs to be copied to the GPU and which
data has to be copied from the GPU back to RAM. In this
for loop we update the H array, therefore it is sufficient to
copy E to the GPU and not copy it back to memory —
for H we copy to and from the GPU.

3.2 Runtimes

Figure 4: GPU runtime scaling over different grid sizes.

We performed all runtime tests on the GPU partition of
Dardel. We allocated a single node, single process per
node, single CPU per process as well as one GPU. Figure
4 displays the runtime over different grid sizes, that we
achieved the experiment setup described above. A trend
is clearly visible, for small grid sizes the runtime differ-
ences are minimal, however for bigger grid sizes we start
to see big improvement in runtime. It is important to
note that the grid sizes for this problem are still relatively
small. We restricted ourselves to not overly congest the
system; however, we do expect the trend visible continue
for larger, more mature grid sizes.

3.3 Discussion

We expect the GPU runtimes to be much more competi-
tive to the other optimisation methods that we present in
this report. However, for the grid sizes used in our experi-
ments, the GPU hand-off performed not as efficiently. We
contribute this to the fact that the problem sizes for our
experiments where still to small, making the overhead of
copying data from and to the GPU the main bottleneck
of the computation. Also, increasing the number of loop
iterations (increasing NSTEPS) of the computation would
probably aid the GPU computation a lot compared to the
serial computation, since the copy operation is only per-
formed once before and after the loop, effectively reducing
the relative overhead.

There is still a lot of optimisation potential using the
GPU, however, we did not focus on that more in this re-
port, since this is not the main goal of this course. Future
work (maybe in the context of the applied GPU program-
ming course) could further investigate this potential.

4 Parallelism through MPI

The code for this section is present in the 3_mpi directory.
The dardel_runtimes subdirectory contains the runtimes
plotted in the graphs below, which were averages across
3 runs. Additionally, the outputs/ directory contains the
snapshots of E and H at different time-steps for the serial
and parallel implementation(s), which were used to verify
correctness using the verify_outputs.sh script.

4.1 Implementation Description

To parallelize the serial code with the use of MPI, we first
initialize the global E and H grids with the process with
rank 0. This is followed by a scattering of this global
grid to all processes in the method present here in the
fdtd_mpi.c file. This scattering occurs over a 1D Carte-
sian communicator, which is first created with the help of
MPI_Cart_create.

After this, the following three steps are performed at
each step of the update-loop:

• Halo-Exchange for E: Each process sends the first
value of the chunk assigned to it to its left neighbour
and receives a value in return from its right neigh-
bour. This is done through the blocking Sendrecv

method to make the exchange easier to reason about.

• Compute H: The update for the H array are per-
formed. These would have required the most up-to-
date values for E, which is why the halo exchange
for E occurred in the previous step. We take spe-
cial care of the boundary condition for H when the
process performing the update is responsible for the
last chunk of H.

• Halo-Exchange for H: Each process sends the last
value of its updated H chunk to its right neighbour
and receives a value from its left neighbour. This is
done in an analogous way to the halo-exchange for
E.

• Compute E: We finally update the contents of E,
using the updated values from the H ghost cells re-
ceived in the previous step. This is done in an anal-
ogous manner to the updates to H, with care taken
of the boundary condition in case the process is up-
dating the last chunk of E.

Note that here, all halo-cell exchanges are performed
through blocking, synchronous communication. Finally,
once the computation loop is complete, we add a barrier
to ensure that all processes agree to completing all steps
of the computation before proceeding. After this barrier,
we gather the results of the local E and H arrays from each
process in to a global E and H grid (respectively) at the
rank 0 process in this function. This can then be printed
to file for diagnostic purposes if needed. The full-code for
our implementation briefly described above can be found
in the fdtd_mpi.c file here.

Page 4 of 11

https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/3_mpi/fdtd_mpi.c#L25
https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/3_mpi/fdtd_mpi.c#L108
https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/3_mpi/fdtd_mpi.c

(a) Strong Scaling (6.4 Million, 1k Iters) (b) Weak Scaling (100k/Process, 1k Iters)

Figure 5: Strong and Weak Scaling (MPI)

4.2 Strong and Weak Scaling + Commu-
nication Overhead

The strong and weak scaling plot for the implemen-
tation can be found in Figure 5. The configura-
tions used to generate these runtimes can be found in
the run_strong_scaling.sh and run_weak_scaling.sh

files.
From Figure 5a, we see worse runtimes for 1 or 2 pro-

cesses, which could be attributed to the greater MPI over-
head compared to the benefits of the limited parallelism
through 1 or 2 processes. As the number of processes
increase, the runtimes are marginally better – achieving
their lowest at 4 processes and then increasing till they get
slightly worse at 64 processes. This trend indicates that
the benefits of parallelism start to diminish as the number
of processes increase, likely because of greater MPI over-
head (halo-exchange, barrier at the end of the compute-
loop, etc.) and an over-burdening of resources on 1 Dardel
node once we have more than 16 processes involved in a
communication. Thus, a balance is struck at 4 processes
between MPI overhead and parallelism which is optimal.
However, there isn’t a big variation in the runtimes at ≥ 4
processes, especially from 4 to 8 processes. Thus, it could
be the case that a different run could give better runtimes
at 8 processes instead of 4. However, the sharp decline in
runtime from 2 to 4 processes shows the promise of MPI
parallelism if we use 4-8 processes.

Figure 5b shows that after a sharp increase in runtime
going from 1 to 2 processes, the runtime seems to be in the
stable 29-33 second range for all process counts. The ideal
scenario for a weak-scaling test would be to have runtimes
remain stable as the problem size increases – as this would
indicate that larger problems can be solved with the help
of larger resources. Except for the jump on going from 1
to 2 processes (because of the MPI overhead with regards
to blocking halo-exchanges, etc), we see this ideal trend
we hoped for in the weak-scaling test.

Figure 6: ScoreP on MPI (6.4 Million Elements, 1k Iters,
64 Processes, 1 Node)

In addition to these tests, we profiled this MPI imple-
mentation with ScoreP to get an idea of communication
overhead involved with halo-exchanges, using 6.4 million
elements and 1k iterations with 64 processes on 1 Node.
The results of this can be seen in Figure 6.

We notice a considerably large amount of time being
spent in the MPI portion of code at a staggering 98.4%
of the total time and an incredibly high time/visit.
The MPI calls done in the compute-loop we are inter-
ested in are the blocking Sendrecv communication calls
for halo-exchanges. Thus, this indicates that because of
its blocking nature, each Sendrecv call is costing a sig-
nificant amount of time, bumping up the communication
overhead and thus the runtime (total time and time per
visit) for the MPI section. In comparison, the USR sec-
tion has a similar number of visits but a drastically lower
time spent per visit. This might also explain why we did
not see a significant improvement in runtime compared to
the serial version as the number of processes increase –
any benefit gained from parallelism was likely countered
by the overhead of blocking communication between more
processes. With an increase in the number of processes,
the sub-problem size and the chunk of the compute loop
gets smaller. Hence, more time is spent waiting for halo-
exchanges to complete than in the local computation by
each process. Thus, performing halo exchanges in a non-
blocking manner could lead to some improvements, which
is what guided our optimization strategy in the next sec-
tion.

5 Optimizing MPI Parallelism

For optimization of the parallel implementations, we fo-
cus on the parallel MPI implementation in Section 4. The
OpenMP implementations were incredibly fast compared
to the serial counterparts already, and we felt we could im-
prove MPI a lot more. The files referred to in this section
can be found under the 4_opt directory of the repository.
The dardel_runtimes/ and the outputs/ directory serve
the same purpose as in Section 4.

5.1 Attempt 1: Communication-
Computation Overlap w/ Non-
Blocking Halo Exchange

Page 5 of 11

(a) Varying Processes (Same Input) (b) Varying Input (8 Processes)

Figure 7: Sync (Base) MPI vs Async MPI

From the ScoreP analysis of the MPI code in Sec-
tion 4.2, we concluded that the blocking Sendrecv halo-
exchanges are likely contributing to the lacklustre perfor-
mance. To rectify this issue, we decided to implement
halo-exchanges through non-blocking mechanisms: with
the help of Irecv and Isend. This allowed us to over-
lap communication (through halo-exchanges) with com-
putation: since the interior portion of each chunk can be
computed without the need of data from halo-exchanges.

Thus, we initiate Irecv and Isend requests for a halo-
exchange, then compute the updated values for the inte-
rior of each chunk. After this computation, we wait on
these 2 halo-exchange requests to complete, after which
we compute the boundary cell(s). We repeat this method
for updating both the E and the H grids. The code for this
can be found in the fdtd_async_opt.c. We will refer to
this as the Async/Non-Blocking Optimization (Opt 1) of
the MPI code from Section 4, while the code from Section
4 will be referred to as the Base MPI implementation.

Figure 7a shows the performance of this optimization
compared to the blocking/base MPI implementation from
Section 4. We vary the number of processes keeping the
problem size constant (6.4 million elements, 1k iterations).
The script for obtaining these runtimes can be found in
the run_async_opt.sh file here. From Figure 7a, we can
see that till 8 processes, the async MPI implementation
performs visibly better than the synchronous version. We
believe that the reason for this is the communication-
computation overlap to update the interior of the grids
makes more efficient use of the idle time that was other-
wise wasted in the synchronous halo-exchange.

However, the performance from 16 processes onwards
is quite similar, where any differences between the two
runs could likely be attributed to being within a margin
of error from each other. Thus, this shows that with an
increase in the number of processes, the cost of synchro-

nizing the MPI communication between different/adjacent
workers adds up – negating the potential benefits of the
asynchronous exchange. Additionally, as the number of
processes increase but the problem size remains the same,
we have more processes responsible for smaller chunks of
the global arrays. This means that the computation part
of the computation-communication overlap is smaller, and
thus the processes are more likely to end up waiting for
a longer time at the MPI_Waitall call after the interior-
computation is finished. Finally, going from 8 to 16 pro-
cesses on a single Dardel node (which has 8 NUMA nodes)
could over-burden the resources on a single Dardel node
and could thus be a contributing factor to the communi-
cation overhead. All these reasons would give us similar
behaviour to the sync MPI implementation after a certain
threshold, which is what we observed.

Based on the results from Figure 7a, we concluded
that 8 processes seems to offer the best balance be-
tween async MPI communication and parallelism, and
wanted to explore this further. This was done in Fig-
ure 7b, where we analysed the runtimes across different
grid sizes for the 2 implementations, both using 8 pro-
cesses. The SLURM script for this can be found in the
run_mpi_async_opt_compare.sh file here. For smaller
grid sizes, the two implementations seem to perform sim-
ilarly, with the Base MPI even having a slight edge likely
because of the simpler structure of the code and fewer
calls to the MPI library making the async communica-
tion an unnecessary excess. Another reason might be the
smaller computation portion because of smaller grid-sizes,
as explained earlier.

However, as the grid sizes increase, we start seeing the
noticeable benefit of using async over sync communication
for halo-exchanges. As the grid sizes increase, so does the
”computation” part of the overlap, meaning that more
time is spent efficiently performing interior-updates be-

(a) Synchronous (Base) MPI ScoreP (b) Async (Optimized) MPI ScoreP

Figure 8: Sync (Base) MPI vs Async MPI ScoreP

Page 6 of 11

https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/4_opt/run_async_opt.sh
https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/4_opt/run_mpi_async_opt_compare.sh

fore hitting the eventual blocking MPI_Waitall call. This
call then finishes quickly and brings forth the anticipated
advantage. Note: While the runtimes plotted in Figure
7b are averages across 3 runs, we did observe consider-
able differences between these runs for both the Base MPI
and the Async MPI implementations. We believed this
might be because of unexpected allocation of processes to
CPUs on the Numa nodes by SLURM (making for variable
communication time), and thus requested more processes
on the same node to get better allocation. Despite this, we
did observe some non-trivial variation between runs on the
same invocation. However, the trend we observed seemed
to largely follow the one presented here.

We also profiled using ScoreP the Base MPI and the
Async MPI implementation using 8 processes (6.4 million
elements, 1k iterations). Figure 8a and Figure 8b show
the result of the analysis for the Sync and Async imple-
mentations with this configuration, respectively.

Despite a greater percentage of time being spent in the
MPI section for the Async implementation and a higher
number of visits to MPI, we notice that the time per
call for MPI is significantly lower compared to that for
the Sync Implementation. We believe that this is be-
cause of the fewer amount of waiting time required near
blocking calls (such as MPI_Waitall), since the relatively
larger computation portion gives enough time for the halo-
exchanges to have finished by the time we reach the block-
ing portion of the code. This is also evident in the total
time (for ALL) spent in the simulation – where we see a
nearly 30 second decrease in the Async version compared
to the Sync version. While the actual running times are
likely much higher for both implementations here because
of the ScoreP profiling intervention, a 30 second differ-
ence is considerably large, which would likely translate to
a noticeable difference without ScoreP as well – as was
observed in the plots in Figure 7.

5.2 Attempt 2: OpenMP Parallelism w/
Non-Blocking Halo Exchange

Figure 9: Async MPI + OMP Performance

We investigated if we could obtain noticeable runtime
improvements over what was seen in Section 5.1, and
were able to do so by incorporating OpenMP into the
E and H updates. The code for this can be found in
the fdtd_async_omp_opt.c here. The main changes here
involved the use OpenMP parallelism in the compute-
intensive loop-based updates into the interior of the chunk
that each process is assigned. This snippet illustrates this
for the H-interior updates.

Given this code, we investigated the impact of spread-
ing the computation on up-to 4 Dardel Nodes, where we
spawn up-to 4 processes (meaning we tested on up to 16
processes in total) on each Node and have 16 threads per
process. The Slurm file used to obtain the runtimes with
this configuration can be found here.

Figure 9 shows the comparison between the Async MPI
+ OpenMP implementation with the other two MPI im-
plementations discussed earlier. The problem size is kept
constant here (6.4 million elements, 1k iterations). We
can see that unlike the Async-only MPI implementation
(Optimization 1), the performance of the Async MPI +
OpenMP implementation (Optimization 2) continues to
improve as we go from 8 processes to 16 processes. One
explanation for this could be that the use of OpenMP
threads in the compute portion of the communication-
compute overlap drastically accelerates the overall run-
time of each step in the overall simulation. Thus, despite
the compute part becoming faster (because of the use of
OpenMP) and consequently there being less of an over-
lap between the compute and the communication, Opti-
mization 2 makes each step of the compute more efficient,
thus consistently reducing the runtime. In addition, we
spawn a maximum of 4 nodes per process, which could be
preventing an over-burdening of resources on each of the
Dardel nodes and lead to more efficient (and quicker) MPI
communication.

6 Conclusion

In the previous sections, we discussed the runtimes of the
different implementations and optimizations of the 1D-
FDTD simulation. Here, we present a final graph with the
runtimes of each of the implementations discussed plotted
against the serial runtime as we increase the grid size.
For implementations that can have different configura-
tions (such as: different number of threads in OpenMP),
we have plotted the runtimes of the best configuration
observed while examining the section. Figure 10a shows
a line-plot for runtimes of different implementations on
varying grid-sizes, and Figure 10b displays this runtime
in a bar-graph format to truly highlight the performance
gains.

One exception to this is the configuration chosen for
the Base MPI implementation from Section 4, where we
chose 8 processes instead of 4 for this plot. As discussed
earlier, we believe that the placement of the processes on a
Dardel node by SLURM could play a non-trivial impact in
determining the runtime of the blocking MPI implementa-
tion (especially since there is no compute-overlap to hide
the cost of the communication). While 4 processes gave
the lowest runtime in the strong-scaling test in Section 4,
it failed to give better runtimes than 8 processes when ran
across different grid sizes in a separate run. As argued ear-
lier, the runtimes for different 4 and 8 process counts in the
Strong-Scaling test in 4 seemed to be within a margin of
error from each other. Thus, we decided to go with 8 pro-
cesses here, which gave lower runtimes on one of the runs
(likely because of more favourable process-placements by
Dardel on this run).

From Figure 10, the serial implementation outperforms
all parallel strategies for the smallest grid sizes, demon-
strating that the overhead required to setup the different

Page 7 of 11

https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/4_opt/fdtd_async_omp_opt.c
https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/4_opt/fdtd_async_omp_opt.c#L61
https://github.com/paulmyr/DD2356-MethodsHPC/blob/master/5_project/4_opt/run_async_omp_opt.sh

(a) Runtime for Different Grid Sizes (b) Bar Plot for Largest Grid Sizes

Figure 10: Concluding Results

parallelization techniques overwhelms the amount of com-
pute required to perform such small simulations. However,
the serial implementation begins to be outshone by paral-
lelization techniques very quickly.

The OpenMP implementations seem to perform the
best out of all implementations, likely because of the
sheer compute-acceleration offered by parallelizing the rel-
atively simple and independent E and H updates in each
simulation-iteration. Between these 2 approaches, the
OpenMP only approach outperforms the MPI + OpenMP
approach till a certain grid size. However, for the last 2
grid sizes, the Async MPI + OpenMP approach outper-
forms the raw OpenMP approach. This is likely because
for bigger inputs, we begin to see the advantages of do-
main decomposition and better distribution of the input
problem across different nodes and processes, reducing the
load on a single node/process.

After these two implementations, we see that the GPU
hand-off technique seems to perform reasonably well. The
initial cost of moving the data to and from the GPU seems
to overburden the runtime for smaller grid sizes, but as
the grid size increases, we begin to see the advantage of
GPU parallelization over the serial implementation. A
way to improve the GPU parallelization even more in the

future might be to explore involving multiple GPUs in the
computation, which would require decomposing and dis-
tributing the problem manually across these GPUs. This
might worsen runtimes for smaller grids, but might lead
to better runtimes for much larger grids.

Finally, the MPI-only implementations seem to per-
form very poorly for small-moderate grid sizes, likely
because the overhead of the halo-exchange involved in the
split-input domain does not offer any significant advantage
over simpler implementations. This trend remains true for
the Synchronous MPI implementation, which isn’t able to
take advantage of the communication-compute overlap.
The Async-only MPI implementation, on the other hand,
is able to overlap compute with communication for halo
exchange and sees runtimes go down as the grid sizes in-
crease (compared to serial and Sync MPI) as the compute
is able to hide the communication cost more effectively.

Thus, from this experiment, we believe that the
best approach would be to use the serial implemen-
tation for small input sizes, then transition to the
OpenMP only approach for moderate input sizes, and fi-
nally to switch the to the Async MPI + OpenMP ap-
proach for large input sizes.

References

[BS23] Michaela Barth and Gert Svensson. Dardel sustainability at a glance. [Online; accessed Jun 2, 2025]. Aug. 2023.
url: https://www.pdc.kth.se/polopoly_fs/1.1271258.1692656955!/Dardel_Sustainability.pdf
(cit. on p. 3).

Page 8 of 11

https://www.pdc.kth.se/polopoly_fs/1.1271258.1692656955!/Dardel_Sustainability.pdf

Appendix

Std Dev, Min, Max Runtimes

For brevity, we did not include the std dev, min, max of the runtimes obtained in the main report itself. The most
important ones, however, be found in text-format in the repository, under the misc/stats_for_nerds directory here.
Below we include some of the relevant files with these stats that might be of interest.

• serial_grid_vary.txt: Serial runtimes for different grid sizes. Plotted in Figure 2.

• omp_grid_vary.txt: OpenMP Runtimes for different grid sizes (with 128 threads). Plotted in Figure 10.

• omp_strong_scaling.txt: OpenMP Runtimes for Strong Scaling test.

• omp_weak_scaling.txt: OpenMP Runtimes for Weak Scaling test.

• gpu_grid_vary.txt: GPU Runtimes for Different grid sizes.

• mpi_strong_scaling.txt: Runtimes for Strong-Scaling test of the base (sync) MPI implementation. Plotted
in Figure 5a

• mpi_weak_scaling.txt: Runtimes for Weak-Scaling test of the base (sync) MPI implementation. Plotted in
Figure 5b

• sync_async_mpi_grid_vary.txt: Runtimes for Base MPI (Sync) and Async (Opt 1) MPI implementation for
different grid sizes using 8 processes. Plotted in Figure 7b and Figure 10.

• async_mpi_process.txt: Runtimes for Async MPI (Opt 1) implementation for same input size (6.4 million
elements, 1k iteration), along with the Sync MPI runtimes in the same run. Plotted in Figure 7a and Figure 9.

• async_omp_process.txt: Runtimes for Async MPI + OpenMP (Opt 2) implementation for same input size.
Plotted in Figure 9

• async_omp_grid_vary.txt: Runtimes for different grid sizes for Async MPI + OpenMP (Opt) implementation.
Plotted in Figure 10

GPU hand-off code listing

// Function to update the magnetic f i e l d H
void update H (double ∗E, double ∗H, int NX) {

// Update H from 0 to NX−2 (us ing forward d i f f e r e n c e s)
#pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l for map(to : E[0 : NX]) \

map(tofrom : H[0 : NX])
for (int i = 0 ; i < NX − 1 ; i++) {

H[i] = H[i] + (DT / DX) ∗ (E[i + 1] − E[i]) ;
}
// Simple absorb ing boundary cond i t i on :
H[NX − 1] = H[NX − 2] ;

}

Figure 11: OMP pragma used to hand off computation to GPU.

Verification results

The final e-field of all implementations is displayed in the following plot.

Page 9 of 11

https://github.com/paulmyr/DD2356-MethodsHPC/tree/master/5_project/misc/stats_for_nerds

Figure 12: Serial Implementation Runtime

Numerical results for the peaks of the final e-fields are shown in the table below and yielding the identical values
and indices (x-Axis) as the estimated peak of the serial implementation. NX is set to 6.4e6.

Table 1: Runtime values and indices for different implementations

OpenMP Implementation
Implementation Value Indices
Serial 0.499674 [3199500, 3200500]
GPU 0.499674 [3199500, 3200500]
OMP 0.499674 [3199500, 3200500]

MPI Implementation
Implementation Value Indices
Serial 0.499674 [3199500, 3200500]
Parallel 0.499674 [3199500, 3200500]

Optimization Implementation
Implementation Value Indices
Serial 0.499674 [3199500, 3200500]
Parallel Async 0.499674 [3199500, 3200500]
Parallel Async w. OMP 0.499674 [3199500, 3200500]

Final e-field results of serial reference for different grid sizes (NX).

Page 10 of 11

Figure 13: Serial simulation for different grid sizes (NX)

Page 11 of 11

	Serial Implementation and Correctness
	Serial Runtimes
	Correctness

	Parallelism through OpenMP
	Implementation description
	Strong and Weak Scaling
	Discussion

	OpenMP GPU Hand-off
	Implementation Description
	Runtimes
	Discussion

	Parallelism through MPI
	Implementation Description
	Strong and Weak Scaling + Communication Overhead

	Optimizing MPI Parallelism
	Attempt 1: Communication-Computation Overlap w/ Non-Blocking Halo Exchange
	Attempt 2: OpenMP Parallelism w/ Non-Blocking Halo Exchange

	Conclusion
	Appendix
	Std Dev, Min, Max Runtimes
	GPU hand-off code listing
	Verification results

