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The code for our project can be found at this location: https://github.com/paulmyr/DD2358-HPC25/
tree/master/10_project_rishi_paul. The original code for this project is taken from the following
GitHub repository. The code is written by Philip Mocz.

We expect to get a grade of A (for the project and the course). Finally, we made following changes
before starting with the project:

• Fixed a bug that resulted in an infinite loop when setting the plotRealTime flag to False.
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1 Introduction

The Kelvin-Helmholz-Inequality is a phenomenon that arises when two fluid layers of different ve-
locities interface with each other. It results in characteristic patterns that can be observed, e.g. in
clouds, the surface of the sun or in jupyters colourful atmosphere. Philip Mocz created an which
produces a visualization of the characteristic swirls of the K-H-inequality.

The Finite Volume method is a popular simulation technique to simulate fluids or partial differ-
ential equations that can be represented in a conservative form. This is often the case for equations
that describe physical conservation laws. The Euler-Fluid-Equations (a simplifications of the Navier-
Stokes-Equations) can be represented — besides it’s primitive description — in such conservative
form. Within the algorithm, Philip Mosz makes use of both representations of the formula. He uses
the primitive form to extrapolate values in time and space, but uses the conservative representation
to derive the update formula. Numerically, this achieves the best of both worlds. Extrapolating
within the primitive form is more stable whereas the conservative representation is used to compute
the update efficiently.

The algorithm in principle works as follows: For each time step and each cell do

1. Get cell central primitive variables (convert from conservative ones)

2. Calculate time step size ∆t

3. Calculate gradient using primitive variables (using central differences)

4. Extrapolate primitive variables in time

5. Extrapolate primitive variables to faces

6. Compute fluxes along each face

7. Update solution by adding fluxes to conservative variables

First it is important to note, that all of these steps are computed for the density ρ, pressure p as
well as the velocity in both dimensions vx and vy. These computations don’t rely on each other and
can therefore be performed in parallel.

Second, each function call in itself usually performs a computation on the whole grid. The original
implementation makes use of this by vectorizing the computation (e.g. using np.roll). These
calculations can be parallelized — they are in fact embarrassingly parallel.

We aim to introduce optimizations that decrease the overall runtime of the computation. To
achieve this, we use techniques obtained from the lectures, specifically using cython to use pre-
compiled c code to reduce python overhead and investigate a distributed computation approach
utilizing dask. As a little bonus treat, we combined the dask and cython approach. Lastly, we
investigated using GPU accelerators using pytorch.

2 Baseline tests

2.1 Testing and profiling setup

All runtime tests that show results for a specific grid size were computed on a 2021 M1 MacBook Pro
(16’) if not explicitly stated otherwise. For every grid we simulated 256 time steps without computing
the visualization. Every test was run three times, runtimes were then averaged.

Some of the profiling graphs are computed on a 2020 M1 MacBook Air, we specify it explicitly
when this was done so. All implementations were tested to ensure correctness by comparing the final
rho values on the grid between baseline and optimized implementations. Every approach presented
in this report passed this test.

2.2 Runtime

We approached this problem by trying to get a basic understanding of what might be the runtime
bottleneck. For this we used the line profiler. We simulated1 on a 256x256 grid for 256 iterations. We

1using the MacBook Air (2020)
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came to the conclusion that a large portion (nearly 50%) of computation time is spent to compute
the fluxes (getFlux method).

Line # Hits Time Per Hit % Time Line Contents
==============================================================

195 @profile
196 def main ():

[...]
272 # compute fluxes (local Lax - Friedrichs /Rusanov)
273 256 357351.0 1395.9 25.0 flux_Mass_X , flux_Momx_X , flux_Momy_X ,

flux_Energy_X = getFlux (...)
274 256 320673.0 1252.6 22.4 flux_Mass_Y , flux_Momy_Y , flux_Momx_Y ,

flux_Energy_Y = getFlux (...)
[...]

All other function calls accumulated to the other 50%, however each in itself were more or less
neglegtable (at most below 4%). This strongly incentivised to focus our efforts onto this part of the
computation.

The runtime of the simulation mostly depends on two parameters. First and foremost the number
of time steps: Each time step is computed in one iteration of the main loop. Figure 1 displays the
runtime the computation of each time step needs. We can observe that the runtime per iteration is
mostly consistent over the course of the simulation.

Figure 1: Baseline Runtime per iteration on 2021 MacBook pro

Important note: To simulate a fixed time, the total number of time steps increases by increasing
grid resolution. With other words, simulating two seconds using a fine grid uses more iterations than
simulating two seconds using a coarse grid. The reason is that dt, which is computed each loop, is
dependent on dx — the granularity of the mesh.

Figure 2: Baseline Runtime per iteration on 2021 MacBook pro
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The second important parameter is the grid size. Finer grids allow for higher precision but
increase the computational complexity quadratically. To measure runtime over a variety of grid sizes,
we decided to keep the number of time steps constant. We simulated 256 time steps over all grid sizes
and performed each computation three times, which we then averaged. The baseline/default2 is the
original implementation of the simulation. Figure 2 visualizes the wall times for different grid sizes
of the baseline implementation on a log-log scale.

2.3 Memory

We measured the memory consumption of the simulation over the runtime on a 512x512 grid. Figure 3
depicts the measurement we obtained using the mprof module in python. We see that once all memory
has been allocated, all computations are performed in-place. This is good, since the reallocating
memory and waiting for the garbage collector to free memory could lead to performance issues,
especially on larger grids.

Figure 3: Memory consumption 512x512 grid measured on M1 MacBook Air

3 Optimizations using Cython

Since getFlux was the bottleneck for the simulation based on our profiling, we focused on optimizing
this function using Cython. We investigated four approaches in total, only one performed better than
the baseline3. All runtimes presented in this section timed the simulation using different versions of
the getFlux method.

3.1 Attempt 1: Using np.asarray With Minimal Changes

For the first attempt, we extensively use Cython’s typed memoryviews; both for arguments and
intermediate variables defined in the function. The memoryviews are converted to numpy arrays
using np.asarray to allow for vectorized operations. This way there is minimal deviation from
the structure of the original code4. Figure 4 depicts the performance of this attempt compared
to the baseline, which is slightly worse. We believe this can be explained by the frequent calls to
np.asarray, which likely requires interactions with the Python runtime. The original code was
vectorized incredibly well, so there were no easy performance gains (e.g. by optimizing nested for-

loops) that Cython could have automatically achieved without our intervention.

2Code for baseline found here.
3The code for this section is present in the cython/ directory of the repository here
4Code found here (getFluxAsArray).
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3.2 Attempt 2: Re-Implement Vectorized Arithmetic

We re-implemented5 numpy’s vectorized operations using simple nested for-loops. For example, the
addition of 2 numpy arrays a + b was re-implemented with nested for-loops using element-wise
additions. We continued using typed memoryviews in all places. We hoped that Cython would be
able to optimize the simpler nested loops, leading to a better runtime; however, this was not the case.
The comparison of this attempt with the baseline and Attempt-1 can be seen in Figure 4.

One explanation for the poor performance of this implementation could be attributed to the fact
that each operation requires the program to iterate over the arrays multiple times. The original
code contains various combination of such simpler operations to compute the intermediate variables.
Another issue could be the fact that numpy is very good at vectorizing these optimizations, whereas
the used c-compiler of cython might not.

Figure 4: Attempts 1-4 vs Baseline

3.3 Attempt 3: Single Python Loop

We observed that all the computations for the returned fluxes can be performed in an embarrassingly
parallel manner: no cell of the returned grids dependent on any other cell. Thus, iterating over the
input grids one cell at a time and computing the resulting fluxes would give us the same result as
the vectorized version. We implemented 6 a single nested loop in Python, where we compute each
flux component one cell at a time using typed memoryviews. We disabled some cython flags (such as
boundscheck, wraparound) to help with speed.

As depicted in figure 4, the performance was the worst out of all attempts. This was surpris-
ing to us: we believed that Cython would be able to minimize the number of calls to the Python
runtime because the nested loops involved only arithmetic operations on elements of typed memo-
ryviews. However, on examining the HTML file generated using the cython -a ... command, we
still observed heavy Python runtime calls for computations, particularly those that involved accessing
elements of the typed memoryviews (see Figure 13). The frequent callbacks to the Python runtime
must have reduced the number of optimizations that Cython was able to make — leading to worse
performance.

5Code found here (getFluxAsLoops).
6Code found here (getFlux).
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(a) Line Plot (b) Bar Graph

Figure 5: Cython Attempt 4 vs Baseline

3.4 Attempt 4 (Chosen Optimization): Single C Loop

Since Cython was not able to prevent the Python runtime interactions, we decided to reimplement7

the core logic of the original getFlux method in C directly. The syntax and structure of the imple-
mentation was inspired by the example presented in the Cython documentation (link). The numpy
arrays passed to the getFluxRawC are in contiguous row-major (C) order, which makes the port of the
python code to C easier. Correctness is tested in the flux_test.py file to verify similarity between
the default getFlux and getFluxRawC. We still use typed memoryviews for the numpy arrays, along
with disablement of some Cython flags.

The runtime-comparison of this approach with the other attempts and baseline is present in Figure
4. Of all attempts, this approach performed the best and most importantly: better than the baseline
for all grid sizes. This may indicate that performing everything in one-loop is the right approach
and that Cython’s extensive calls to the Python runtime limited runtime optimizations in Attempt
3. In Figure 5a, we see that the performance of this approach remains better than the baseline for
grid sizes 2048 and 4096. The bar graphs in Figure 5b highlights the performance difference of this
Cython optimization over the baseline.

4 Optimizations using Pytorch

(a) Line Plot (b) Bar Graph

Figure 6: Runtime pytorch implementation vs baseline

The original implementation makes heavy use of numpy functionalities. All data is stored as
numpy arrays that are incrementally updated using the computed fluxes. This provides an easy

7Code found here (getFluxRawC). The C code is found here.
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approach to move the computations on a GPU using pytorch8. Pytorch’s computations are run using
tensors — an immutable data-type that shares resemblance with numpy arrays. A big difference
however is that tensor operations are supported to be computed using accelerators. Due to the fact
that pytorch mirrors numpys interface, we simply need to convert said numpy arrays to pytorch
tensors and tell pytorch to perform the computations using GPU compatible hardware.

To make runtime results more comparable to the other approaches, we used the M1’s metal, the
integrated GPU on the M1 chip. This is achieved by specifying the mps device in torch. The only
difference to CUDA is that metal does not support 64bit floats. Otherwise, the handling is identical.

As one can see in figure 6, making use of accelerators greatly improves the overall runtime for
larger grid sizes. However, on smaller grid sizes, the overhead significantly slows the computation.

5 Optimizations using Dask

We approached optimization with Dask from two angles9. For all dask runs, the default scheduler
settings were used, which on the Mac book Pro gave us 5 workers, 2 threads per worker.

Each iteration of the simulation is dependent on the outputs of the previous iteration. Coming up
with Dask optimizations that delayed the call to compute() till the last possible moment (preferably
outside the loop), was difficult. Particularly, the termination condition of the original code dependent
on the time parameter t, which was updated in every iteration based on the value of dt that was
computed inside the loop. Thus, the 2 optimizations we tried respect this starting structure of the
code, and consequently compute() is called in each iteration. While fixing the number of iterations
could generate better results, we were still able to obtain promising improvements.

Figure 7: Dask Attempts 1-2 vs Baseline

5.1 Attempt 1: Dask Arrays

As noted above, getFlux is the bottleneck for the baseline simulation. This method is embarrass-
ingly parallelisable (no cell computation dependent on any other cell). We used map_blocks from
dask.arrays on the getFlux for the getFlux method10. We only used this for the computation
of the fluxes in x- direction first, hoping to extend it to y- direction if the performance was good.
We created dask arrays for the input to getFlux in each iteration. We then called compute() on
the value returned by map_blocks to obtain the fluxes in x- direction in each loop iteration. The
task-stream visualizations were done while running the experiment on a grid size of 128 till 2 seconds
of simulated time.

8The code for this section is present in the torch/ directory of the repository here.
9The code for this section is present in the dask/ directory of the repository here.

10Code found here.
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(a) Work Stream (64 chunks) (b) Work Stream (4 chunks)

Figure 8: Work Stream for Dask Attempt 1

We varied the chunk sizes of the dask arrays to see what impact they have on the runtime. A
plot of this can be seen in Figure 14. In Plot 7 we present only the runtime for the best performing
chunk-size, which was 1. In summary, the performance decreased with an increase in chunk-sizes.

The performance of this implementation always performed worse than the baseline. Several factors
could have contributed to this. Firstly, there is overhead involved in Dask having to create the dask
arrays with the correct chunk sizes, allocating them to the workers, setting up the scheduler, etc.
This overhead can be present in the form of communication between workers. We observed this on
the task-stream for the computation on the Dask Dashboard. The red/dark-red observed in the task
stream in Figure 8 indicates a lot of transfer between workers11. This was also present when we had
fewer chunks than cores/workers (Figure 8b). Additionally, the call to compute in each loop iteration
would also lead to a slowdown.

We thought of some ideas to address some of our concerns here (such as trying to delay compute

for everything except dt). However, our experience with Assignment 4’s Bonus lead us to believe
that even with fewer compute() calls, the performance of dask-arrays in a single-machine environment
would likely still be worse than the baseline (because of the set-up overhead discussed above). Thus,
before doing this, we tried a different approach: using dask delayed.

5.2 Attempt 2 (Chosen Optimization): Dask Delayed

Instead of focusing only on the parallelisability within getFlux, we observed that there were several
calls of helper functions that were independent of each other. For instance, computing getFlux

in x- and y-direction can be done independently. By looking at the bigger picture, we decided to
use dask-delayed to store the delayed tasks for each helper function in an array and then called
dask.compute() for each element of the task array12.

Each such helper function was tagged the @delayed decorator. The performance of this imple-

Figure 9: Task Stream for Dask-Delayed Optimization

mentation with Attempt-1 (dask-arrays) and baseline can be seen in Figure 7. We see that initially
for very small grids, this attempt performs worse. This is attributed to the increased number of

11The original html file is found here.
12Code found here.
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compute() calls for each independent helper-function, which requires all parallel calls to complete be-
fore progressing. However, as the grid sizes increase, this approach comes out on top. This indicates
to us that as the grid-size increases, the sheer number of computations to be performed outweighs
the cost of the multiple compute() calls (and other overhead required by dask-delayed): leading to
a better performance when doing the computations in parallel for grid sizes bigger than 512. The
improved performance compared to Attempt-1 could be explained by almost no interaction required
between workers, as can be seen by the absence of red in the task-stream graph in Figure 9. This
was our chosen Dask optimization. In Figure 10a, we see that the performance of this optimization

(a) Line Plot (b) Bar Graph

Figure 10: Dask Attempt 2 vs Baseline

remains better than the baseline for larger grids, as we hypothesized. Figure 10b highlights the
time-difference that might be lost in the log-scale based line plot.

6 Bonus Optimization: Cython + Dask

We observed that for the 2 largest grid sizes (2048 and 4096), our Cython optimization performed
worse than our Dask optimization. To us, this indicated that any performance advantage obtained
from performing the time-consuming getFlux operations in C was lost when it came to the sheer
number of operations to be performed, thus giving our parallel Dask optimization an advantage.

As a bonus, we decided to combine the two: we performed the getFluxRawC computation (our
Cython optimization) in parallel, using our Dask-Delayed optimization13.

(a) Line Plot (b) Bar Graph

Figure 11: Cython + Dask Awesomeness

This lead to incredible results for larger grids, as can be seen in 11a. The combined approach
outperforms the approaches of the individual optimizations, and of the baseline. The bar graph in
11b shows the runtimes in a non-logarithmic scale, highlighting the performance boost. For smaller

13Code found here.
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grids, this appears to be between the Cython and Dask optimizations. This could be explained by
the fact that the dask-overhead pulls up the runtime compared to the sole Cython optimization, and
the use of the optimized getFluxRawC pulls down the runtime compared compared to the sole Dask
optimization.

7 Conclusion

The final plot of baseline runtime, and of all the chosen optimizations, can be seen in Figure 12a.
Figure 12b shows the bar graphs for the largest 3 grid-sizes to highlight the performance improvements
over the baseline. The trends and likely explanations for the trends observed in the runtime compared

(a) Line Plot (b) Bar Graph

Figure 12: Concluding results

to the baseline have been discussed extensively in their respective sections. Here, we would like to
make one final important observation about the general trends. For optimization approaches that
require overhead, whether it be initial or otherwise (e.g., moving data to the GPU, Dask-Delayed
setup, compute() calls, etc), struggle to perform on coarse grid resolutions. There, techniques without
significant overhead perform better. However, the advantages of overhead starts becoming apparent
with increased grid-sizes. This is when the sheer number of computations becomes overwhelming It
helps the runtime to prepare for such computations to perform them in parallel — as can be seen
by the better performance of the Dask, Dask with Cython, and the Torch implementations on larger
grids.
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8 Appendix

8.1 Cython Attempt 3: Python Runtime Interactions

Figure 13: Python Runtime Interactions for Cython Attempt 3

8.2 Dask Attempt 1: Dask Arrays Chunk Sizes Variation

Figure 14: Dask Attempt 1: Chunk Size Variation
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8.3 Runtime variation

Figure 15: Runtime variation of different implementations

For completeness, we explored how volatile the runtimes were for different implementations. However,
on the MacBook Pro we could not find any indication that some implementation varied significantly
more than others. Figure15 shows a box-plot over runtimes simulating 2s, each performed 20 times
using a grid of 128x128. As we can see, runtimes remained consistent, we did not pursue this further.
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